Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
Eur J Radiol. 2012 Aug;81(8):e844-8. doi: 10.1016/j.ejrad.2012.02.017. Epub 2012 May 29.
To assess the effect of breast density, fibroglandular tissue volume, and breast volume on the rate of false-positive marks of a computer-assisted detection software in digital mammography.
222 patients with normal digital mammograms and a minimum follow-up of 22 months were retrospectively identified. MLO and CC views were analyzed using a CAD software with three operating points ('specific', 'balanced', 'sensitive'). False-positive marks were recorded. Images were analyzed by a volumetric breast density assessment software, yielding estimates of percentage density, fibroglandular tissue volume, and breast volume. Statistical analysis was performed using the Mann-Whitney U-test, the t-test for independent samples and the Poisson regression model.
Patients with high fibroglandular tissue volumes had a higher mean number of false-positive mass marks than patients with low fibroglandular tissue volumes (specific setting: 0.50 vs. 0.35, respectively; balanced setting: 0.70 vs. 0.40, respectively, p<0.05; sensitive setting: 0.89 vs. 0.58, respectively, p<0.05). Relative risk for a false-positive mass marker increased by 1.43 (p<0.05), 1.63 (p<0.001) and 1.50 (p<0.01) per 100ml of fibroglandular tissue for the specific, balanced and sensitive settings, respectively. No significant effects of percentage density or breast volume on the number or the relative risk of false-positive mass marks were observed.
The volume of fibroglandular tissue present, but not the percentage density of the breast, affected the specificity for masses of the CAD software investigated. This may have implications for improving the performance of CAD systems, as the specificity of CAD may be improved by adjusting the algorithm threshold depending on the volume of fibroglandular tissue present. Considering both factors, fibroglandular tissue volume and percentage density, independently, could improve overall CAD performance in subgroups of patients, e.g. those with small, dense breasts or large breasts with low density.
评估乳腺密度、纤维腺体组织体积和乳房体积对计算机辅助检测软件在数字乳腺摄影中假阳性标记率的影响。
回顾性分析 222 例乳腺钼靶 X 线摄影检查正常且随访时间至少 22 个月的患者。使用计算机辅助检测软件,在三个操作点(“特异”、“平衡”、“敏感”)下对 MLO 和 CC 位进行分析。记录假阳性标记。使用容积乳腺密度评估软件对图像进行分析,得出百分比密度、纤维腺体组织体积和乳房体积的估计值。使用 Mann-Whitney U 检验、独立样本 t 检验和泊松回归模型进行统计学分析。
纤维腺体组织体积较高的患者其假阳性肿块标记的平均数量高于纤维腺体组织体积较低的患者(特异设置:0.50 比 0.35,分别;平衡设置:0.70 比 0.40,分别,p<0.05;敏感设置:0.89 比 0.58,分别,p<0.05)。假阳性肿块标记的相对风险分别增加了 1.43(p<0.05)、1.63(p<0.001)和 1.50(p<0.01),对于特异、平衡和敏感设置,纤维腺体组织每增加 100ml。未观察到百分比密度或乳房体积对假阳性肿块标记的数量或相对风险有显著影响。
研究发现,存在的纤维腺体组织体积,但不是乳房的百分比密度,影响了所研究的 CAD 软件对肿块的特异性。这可能对改善 CAD 系统的性能有影响,因为通过根据存在的纤维腺体组织体积调整算法阈值,CAD 的特异性可能得到提高。考虑到两个因素,纤维腺体组织体积和百分比密度,独立地,可能会改善特定患者亚组的整体 CAD 性能,例如小而致密的乳房或低密度大乳房的患者。