Department of Nuclear Medicine, Clínica Universidad de Navarra, Pío XII 36, 31008 Pamplona, Spain.
Phys Med Biol. 2012 Jun 21;57(12):3963-80. doi: 10.1088/0031-9155/57/12/3963. Epub 2012 May 31.
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
正电子发射断层扫描 (PET) 图像上的肿瘤体积描绘对于正确诊断和治疗计划非常重要。然而,标准的分割技术(手动或半自动)依赖于操作人员,且耗时较长,而全自动程序则繁琐或需要复杂的数学开发。本研究的目的是通过实施一组 12 种自动化阈值算法,以全自动方式对 PET 图像进行分割,这些算法在光学字符识别、组织工程或无损检测图像领域中具有经典应用,可用于高科技结构中的图像。与通常用于 PET 的阈值方法不同,自动化阈值算法无需任何分割对象的先验空间信息或任何特殊的断层扫描仪校准,即可为每张图像选择特定的阈值。使用临床 PET/CT 和小动物 PET 扫描仪,对不同体积的 18F 填充球体进行了采集,具有三种不同的信号与背景比。使用 12 种自动阈值算法对图像进行分割,并将结果与标准分割参考值(最大摄取量的 42%)进行比较。基于聚类和直方图形状信息的 Ridler 和 Ramesh 阈值算法提供的结果优于基于经典 42%的阈值(p < 0.05)。我们在此证明,全自动阈值算法可以提供比经典 PET 分割工具更好的结果。