Suppr超能文献

利用多种正则化方法在正电子发射断层扫描(PET)中进行肿瘤同时分割、图像恢复和模糊核估计

Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations.

作者信息

Li Laquan, Wang Jian, Lu Wei, Tan Shan

机构信息

Key Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

出版信息

Comput Vis Image Underst. 2017 Feb;155:173-194. doi: 10.1016/j.cviu.2016.10.002. Epub 2016 Oct 6.

Abstract

Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the -convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin's lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction.

摘要

在许多放射肿瘤学应用中,从PET图像中准确分割肿瘤至关重要。其中,部分容积效应(PVE)被认为是降低PET成像质量和分割准确性的最重要因素之一。考虑到图像恢复和肿瘤分割紧密相关且能相互促进,我们在本研究中提出了一种变分方法来同时解决这两个问题。所提出的方法将总变差(TV)半盲去卷积和具有多种正则化的Mumford-Shah分割相结合。与许多现有的使用TV或正则化的能量最小化方法不同,该方法在肿瘤边缘采用TV正则化以保留边缘信息,在肿瘤区域内部采用正则化以保留PET图像中代谢摄取的平滑变化。模糊核被建模为各向异性高斯分布,以解决临床PET扫描仪中常见的横向和轴向分辨率差异。能量泛函使用Γ收敛近似进行重新表述,并使用交替最小化(AM)算法进行迭代优化。所提出方法的性能在一个物理体模和分别患有非霍奇金淋巴瘤和食管癌的两个临床数据集上得到了验证。实验结果表明,该方法在同时进行图像恢复、肿瘤分割和扫描仪模糊核估计方面具有高性能。特别是,在体模研究中,该方法恢复图像的恢复系数(RC)接近1,表明能有效恢复原始模糊图像;对于分割,该方法在两个临床数据集上分别实现了平均骰子相似性指数(DSI)为0.79和0.80;估计的模糊核宽度在横向方向上的相对误差小于19%,在轴向方向上小于7%。

相似文献

1
Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations.
Comput Vis Image Underst. 2017 Feb;155:173-194. doi: 10.1016/j.cviu.2016.10.002. Epub 2016 Oct 6.
2
Variational PET/CT Tumor Co-segmentation Integrated with PET Restoration.
IEEE Trans Radiat Plasma Med Sci. 2020 Jan;4(1):37-49. doi: 10.1109/trpms.2019.2911597. Epub 2019 Apr 16.
3
Semi-blind image restoration via Mumford-Shah regularization.
IEEE Trans Image Process. 2006 Feb;15(2):483-93. doi: 10.1109/tip.2005.863120.
5
Robust Image Restoration for Motion Blur of Image Sensors.
Sensors (Basel). 2016 Jun 9;16(6):845. doi: 10.3390/s16060845.
6
Deep Learning for Variational Multimodality Tumor Segmentation in PET/CT.
Neurocomputing (Amst). 2020 Jun 7;392:277-295. doi: 10.1016/j.neucom.2018.10.099. Epub 2019 Apr 24.
7
Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution.
IEEE Trans Image Process. 2013 Jun;22(6):2101-14. doi: 10.1109/TIP.2013.2237915. Epub 2013 Jan 9.
8
Contourlet-based active contour model for PET image segmentation.
Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.
9
A regularization approach to joint blur identification and image restoration.
IEEE Trans Image Process. 1996;5(3):416-28. doi: 10.1109/83.491316.
10
Alternating direction method of multipliers for nonlinear image restoration problems.
IEEE Trans Image Process. 2015 Jan;24(1):33-43. doi: 10.1109/TIP.2014.2369953. Epub 2014 Nov 12.

引用本文的文献

2
Variational PET/CT Tumor Co-segmentation Integrated with PET Restoration.
IEEE Trans Radiat Plasma Med Sci. 2020 Jan;4(1):37-49. doi: 10.1109/trpms.2019.2911597. Epub 2019 Apr 16.
3
Deep Learning for Variational Multimodality Tumor Segmentation in PET/CT.
Neurocomputing (Amst). 2020 Jun 7;392:277-295. doi: 10.1016/j.neucom.2018.10.099. Epub 2019 Apr 24.
5
Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network.
Phys Med Biol. 2018 Dec 21;64(1):015011. doi: 10.1088/1361-6560/aaf44b.
6
Preprocessing of F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution.
Front Aging Neurosci. 2017 Oct 9;9:326. doi: 10.3389/fnagi.2017.00326. eCollection 2017.
7
Adaptive region-growing with maximum curvature strategy for tumor segmentation in F-FDG PET.
Phys Med Biol. 2017 Jul 7;62(13):5383-5402. doi: 10.1088/1361-6560/aa6e20. Epub 2017 Jun 12.

本文引用的文献

1
A review on segmentation of positron emission tomography images.
Comput Biol Med. 2014 Jul;50:76-96. doi: 10.1016/j.compbiomed.2014.04.014. Epub 2014 Apr 28.
2
Spatial-temporal [¹⁸F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy.
Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1375-82. doi: 10.1016/j.ijrobp.2012.10.017. Epub 2012 Dec 6.
3
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Phys Med Biol. 2012 Jun 21;57(12):3963-80. doi: 10.1088/0031-9155/57/12/3963. Epub 2012 May 31.
4
A graph-theoretic approach for segmentation of PET images.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8479-82. doi: 10.1109/IEMBS.2011.6092092.
5
Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.
J Nucl Med. 2011 Nov;52(11):1690-7. doi: 10.2967/jnumed.111.092767. Epub 2011 Oct 11.
6
PET functional volume delineation: a robustness and repeatability study.
Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):663-72. doi: 10.1007/s00259-010-1688-6. Epub 2011 Jan 12.
7
A new method for volume segmentation of PET images, based on possibility theory.
IEEE Trans Med Imaging. 2011 Feb;30(2):409-23. doi: 10.1109/TMI.2010.2083681. Epub 2010 Oct 14.
9
Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation.
IEEE Trans Image Process. 2010 Sep;19(9):2265-77. doi: 10.1109/TIP.2010.2047902. Epub 2010 Apr 8.
10
PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques.
Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87. doi: 10.1007/s00259-010-1423-3. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验