ICTM-Department of Electrochemistry, University of Belgrade, Njegoševa 12, P.O. Box 473, PAK 125213 Belgrade, Serbia.
Phys Chem Chem Phys. 2012 Jul 14;14(26):9475-85. doi: 10.1039/c2cp40455a. Epub 2012 May 30.
We report on new insights into the relationships between structure and activity of glassy carbon (GC), as a model material for electrocatalyst support, during its anodization in acid solution. Our investigation strongly confirms the role of CFGs in promotion of Pt activity by the "spill-over" effect related to CO(ads) for methanol electrooxidation (MEO) on a carbon-supported Pt catalyst. Combined analysis of voltammetric and impedance behaviour as well as changes in GC surface morphology induced by intensification of anodizing conditions reveal an intrinsic influence of the carbon functionalization and the structure of a graphene oxide (GO) layer on the electrical and electrocatalytic properties of activated GC. Although GO continuously grows during anodization, it structurally changes from being a graphite inter-layer within graphite ribbons toward a continuous GO surface layer that deteriorates the native structure of GC. As a consequence of the increased distance between GO-spaced graphite layers, the GC conductivity decreases until the case of profound GO exfoliation under drastic anodizing conditions. This exposes the native, yet abundantly functionalized, GC texture. While GC capacitance continuously increases with intensification of anodizing conditions, the surface nano-roughness and GO resistance reach the highest values at modest anodizing conditions, and then decrease upon drastic anodization due to the onset of GO exfoliation. We found for the first time that the activity of a GC-supported Pt catalyst in MEO, as one of the promising half-reactions in polymer electrolyte fuel cells, strictly follows the changes in GC nano-roughness and GO-induced GC resistance. The highest GC/Pt MEO activity is reached when optimal distance between graphite layers and optimal degree of GC functionalization bring the highest amount of CFGs into intimate contact with the Pt surface. This confirms the promoting role of CFGs in MEO catalysis.
我们报告了在酸性溶液中对玻璃状碳 (GC) 进行阳极氧化时,结构与活性之间关系的新见解,GC 是电催化剂载体的模型材料。我们的研究强烈证实了 CFG 在促进甲醇电氧化 (MEO) 中 CO(ads) 相关的“溢出”效应的 Pt 活性方面的作用,在碳负载的 Pt 催化剂上。通过对伏安和阻抗行为的综合分析以及由于阳极氧化条件的强化而引起的 GC 表面形貌的变化,揭示了碳功能化和氧化石墨烯 (GO) 层结构对活化 GC 的电和电催化性能的内在影响。尽管 GO 在阳极氧化过程中不断生长,但它的结构从石墨带内的石墨层间物转变为连续的 GO 表面层,从而破坏了 GC 的本征结构。由于 GO 隔开的石墨层之间的距离增加,GC 的电导率降低,直到在剧烈阳极氧化条件下发生深刻的 GO 剥落。这暴露了天然的、但丰富官能化的 GC 纹理。随着阳极氧化条件的强化,GC 电容不断增加,而表面纳米粗糙度和 GO 电阻在适度的阳极氧化条件下达到最高值,然后在剧烈阳极氧化下由于 GO 剥落的开始而降低。我们首次发现,在聚合物电解质燃料电池中最有前途的半反应之一的 MEO 中,GC 负载 Pt 催化剂的活性严格遵循 GC 纳米粗糙度和 GO 诱导的 GC 电阻的变化。当石墨层之间的最佳距离和 GC 官能化的最佳程度使最多数量的 CFG 与 Pt 表面紧密接触时,GC/Pt 在 MEO 中的活性达到最高。这证实了 CFG 在 MEO 催化中的促进作用。