Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1 rue Grandville BP 20451, 54001 Nancy Cedex, France.
J Phys Chem A. 2012 Jun 28;116(25):6675-84. doi: 10.1021/jp303680h. Epub 2012 Jun 12.
The thermal decomposition of the 5-methyl-2-furanylmethyl radical (R(1)), the most important primary radical formed during the combustion and thermal decomposition of 2,5-dimethylfuran (a promising next-generation biofuel), was studied using CBS-QB3 calculations and master equation (ME)/RRKM modeling. Because very little information is available in the literature, the detailed potential energy surface (PES) was investigated thoroughly. Only the main pathways, having a kinetic influence on the decomposition of R(1), were retained in the final ME/RRKM model. Among all the channels studied, the ring-opening of the 5-methyl-2-furanylmethyl radical, followed by ring enlargement to form cyclohexadienone molecules is predicted to be the easiest decomposition channel of R(1). The C(6) cyclic species formed can undergo unimolecular reactions to yield phenol and to a lesser extent cyclopentadiene and CO. Our calculations predict that these species are important products formed during the pyrolysis of 2,5-dimethylfuran (DMF). Other channels involved in the decomposition of R(1) lead directly to the formation of linear and cyclic unsaturated C(5) species and constitute an additional source of cyclopentadiene and CO. High-pressure limit rate constants were computed as well as thermochemical properties for important species. ME/RRKM analysis was performed to probe the influence of pressure on the rate coefficients and pressure dependent rate coefficients were proposed for pressures and temperatures ranging, respectively, from 10(-2) bar to 10 bar and 1000 to 2000 K.
5-甲基-2-糠基自由基(R(1))的热分解,是在 2,5-二甲基呋喃(一种很有前途的下一代生物燃料)的燃烧和热分解过程中形成的最重要的初级自由基,使用 CBS-QB3 计算和 master equation (ME)/RRKM 建模进行了研究。由于文献中几乎没有信息,因此彻底研究了详细的势能面(PES)。只有对 R(1)分解有动力学影响的主要途径被保留在最终的 ME/RRKM 模型中。在所研究的所有通道中,预测 5-甲基-2-糠基自由基的开环,随后环扩大形成环己二烯酮分子,是 R(1)最容易的分解通道。形成的 C(6)环状物质可以经历单分子反应,生成苯酚,并且在较小程度上生成环戊二烯和 CO。我们的计算预测,这些物质是 2,5-二甲基呋喃(DMF)热解过程中形成的重要产物。涉及 R(1)分解的其他通道直接导致线性和环状不饱和 C(5)物质的形成,并且是环戊二烯和 CO 的额外来源。还计算了高压极限速率常数以及重要物质的热化学性质。进行了 ME/RRKM 分析以研究压力对速率系数的影响,并提出了压力相关的速率系数,用于分别在 10(-2) 至 10 巴和 1000 至 2000 K 的压力和温度范围内。