Liu Qing, Lim Pilar, Nuamah Issac, Li Yulan
Janssen Research and Development, LLC, Raritan, NJ 08869, USA.
J Biopharm Stat. 2012;22(4):687-99. doi: 10.1080/10543406.2012.678232.
A group sequential analysis following the error spending approach of Lan and DeMets ( 1983 ) requires that the maximum information level be fixed in advance. In practice, however, the maximum information level is often random, making it impossible to determine the information fractions required by Lan and DeMets ( 1983 ) to calculate the sequential boundary. We propose an adaptive error spending approach that further expands practical applications to settings where the interim information levels can depend on blinded accumulating data. We use a simple weighting method to combine independent test statistics from different stages, which are then compared with adaptive boundary values for the group sequential test. We develop a measure-theoretic framework and show that the adaptive error spending approach controls the type 1 error rates. Methods for point estimates and confidence intervals are also proposed. We warn that an error spending approach can lead to serious inflation of the type 1 error rates when the number or timing of interim analyses is allowed to depend on unblinded accumulating data.
遵循Lan和DeMets(1983年)的误差消耗方法进行的序贯分析要求预先设定最大信息水平。然而,在实际中,最大信息水平往往是随机的,这使得无法确定Lan和DeMets(1983年)计算序贯边界所需的信息分数。我们提出了一种自适应误差消耗方法,该方法进一步将实际应用扩展到中期信息水平可能依赖于盲态累积数据的情况。我们使用一种简单的加权方法来合并来自不同阶段的独立检验统计量,然后将其与序贯检验的自适应边界值进行比较。我们开发了一个测度理论框架,并表明自适应误差消耗方法可以控制一类错误率。还提出了点估计和置信区间的方法。我们警告,当允许中期分析的次数或时间依赖于非盲态累积数据时,误差消耗方法可能导致一类错误率严重膨胀。