Suppr超能文献

基于基因组翻译终止信号构建细菌系统发育树。

Bacterial phylogenetic tree construction based on genomic translation stop signals.

作者信息

Xu Lijing, Kuo Jimmy, Liu Jong-Kang, Wong Tit-Yee

机构信息

Department of Biological Sciences, Bioinformatics Program, The University of Memphis, Memphis, TN, USA.

Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.

出版信息

Microb Inform Exp. 2012 May 31;2(1):6. doi: 10.1186/2042-5783-2-6.

Abstract

BACKGROUND

The efficiencies of the stop codons TAA, TAG, and TGA in protein synthesis termination are not the same. These variations could allow many genes to be regulated. There are many similar nucleotide trimers found on the second and third reading-frames of a gene. They are called premature stop codons (PSC). Like stop codons, the PSC in bacterial genomes are also highly bias in terms of their quantities and qualities on the genes. Phylogenetically related species often share a similar PSC profile. We want to know whether the selective forces that influence the stop codons and the PSC usage biases in a genome are related. We also wish to know how strong these trimers in a genome are related to the natural history of the bacterium. Knowing these relations may provide better knowledge in the phylogeny of bacteria

RESULTS

A 16SrRNA-alignment tree of 19 well-studied α-, β- and γ-Proteobacteria Type species is used as standard reference for bacterial phylogeny. The genomes of sixty-one bacteria, belonging to the α-, β- and γ-Proteobacteria subphyla, are used for this study. The stop codons and PSC are collectively termed "Translation Stop Signals" (TSS). A gene is represented by nine scalars corresponding to the numbers of counts of TAA, TAG, and TGA on each of the three reading-frames of that gene. "Translation Stop Signals Ratio" (TSSR) is the ratio between the TSS counts. Four types of TSSR are investigated. The TSSR-1, TSSR-2 and TSSR-3 are each a 3-scalar series corresponding respectively to the average ratio of TAA: TAG: TGA on the first, second, and third reading-frames of all genes in a genome. The Genomic-TSSR is a 9-scalar series representing the ratio of distribution of all TSS on the three reading-frames of all genes in a genome. Results show that bacteria grouped by their similarities based on TSSR-1, TSSR-2, or TSSR-3 values could only partially resolve the phylogeny of the species. However, grouping bacteria based on thier Genomic-TSSR values resulted in clusters of bacteria identical to those bacterial clusters of the reference tree. Unlike the 16SrRNA method, the Genomic-TSSR tree is also able to separate closely related species/strains at high resolution. Species and strains separated by the Genomic-TSSR grouping method are often in good agreement with those classified by other taxonomic methods. Correspondence analysis of individual genes shows that most genes in a bacterial genome share a similar TSSR value. However, within a chromosome, the Genic-TSSR values of genes near the replication origin region (Ori) are more similar to each other than those genes near the terminus region (Ter).

CONCLUSION

The translation stop signals on the three reading-frames of the genes on a bacterial genome are interrelated, possibly due to frequent off-frame recombination facilitated by translational-associated recombination (TSR). However, TSR may not occur randomly in a bacterial chromosome. Genes near the Ori region are often highly expressed and a bacterium always maintains multiple copies of Ori. Frequent collisions between DNA- polymerase and RNA-polymerase would create many DNA strand-breaks on the genes; whereas DNA strand-break induced homologues-recombination is more likely to take place between genes with similar sequence. Thus, localized recombination could explain why the TSSR of genes near the Ori region are more similar to each other. The quantity and quality of these TSS in a genome strongly reflect the natural history of a bacterium. We propose that the Genomic- TSSR can be used as a subjective biomarker to represent the phyletic status of a bacterium.

摘要

背景

蛋白质合成终止过程中,终止密码子TAA、TAG和TGA的效率并不相同。这些差异可能使得许多基因受到调控。在基因的第二和第三阅读框中发现了许多类似的核苷酸三聚体。它们被称为提前终止密码子(PSC)。与终止密码子类似,细菌基因组中的PSC在基因上的数量和质量方面也存在高度偏差。系统发育相关的物种通常具有相似的PSC图谱。我们想了解影响基因组中终止密码子和PSC使用偏好的选择力是否相关。我们还想知道基因组中的这些三聚体与细菌的自然历史有多大关联。了解这些关系可能会为细菌的系统发育提供更好的认识。

结果

以19种经过充分研究的α-、β-和γ-变形菌纲典型物种的16SrRNA比对树作为细菌系统发育的标准参考。本研究使用了属于α-、β-和γ-变形菌亚门的61种细菌的基因组。终止密码子和PSC统称为“翻译终止信号”(TSS)。一个基因由九个标量表示,分别对应该基因三个阅读框上TAA、TAG和TGA的计数。“翻译终止信号比率”(TSSR)是TSS计数之间的比率。研究了四种类型的TSSR。TSSR - 1、TSSR - 2和TSSR - 3各自是一个三标量系列,分别对应基因组中所有基因第一、第二和第三阅读框上TAA:TAG:TGA的平均比率。基因组TSSR是一个九标量系列,表示基因组中所有基因的三个阅读框上所有TSS的分布比率。结果表明,根据TSSR - 1、TSSR - 2或TSSR - 3值按相似性对细菌进行分组只能部分解析物种的系统发育。然而,根据基因组TSSR值对细菌进行分组会得到与参考树中的细菌簇相同的细菌簇。与16SrRNA方法不同,基因组TSSR树还能够以高分辨率分离密切相关的物种/菌株。通过基因组TSSR分组方法分离的物种和菌株通常与通过其他分类方法分类的结果高度一致。对单个基因的对应分析表明,细菌基因组中的大多数基因具有相似的TSSR值。然而,在一条染色体上,复制起始区域(Ori)附近基因的基因TSSR值比末端区域(Ter)附近的基因更相似。

结论

细菌基因组中基因的三个阅读框上的翻译终止信号相互关联,这可能是由于翻译相关重组(TSR)促进的频繁框外重组所致。然而,TSR可能不会在细菌染色体中随机发生。Ori区域附近的基因通常高度表达,并且细菌总是维持多个Ori拷贝。DNA聚合酶和RNA聚合酶之间的频繁碰撞会在基因上产生许多DNA链断裂;而DNA链断裂诱导的同源重组更可能发生在序列相似的基因之间。因此,局部重组可以解释为什么Ori区域附近基因的TSSR彼此更相似。基因组中这些TSS的数量和质量强烈反映了细菌的自然历史。我们建议基因组TSSR可以用作代表细菌系统发育状态的主观生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验