Zafar R S, Chow L H, Stern M S, Vinogradov S N, Walz D A
Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201.
Biochim Biophys Acta. 1990 Nov 15;1041(2):117-22. doi: 10.1016/0167-4838(90)90053-i.
The erythrocytes of the marine polychaete Glycera dibranchiata contain a number of different, single-chain hemoglobins, some of which self-associate into a 'polymeric' fraction. An oligodeoxynucleotide probe was synthesized based on partial amino acid sequences determined by chemical methods, and used to screen a cDNA library constructed from the poly(A+)mRNA of Glycera erythrocytes (Simons, P.C. and Satterlee, J.D. (1989) Biochemistry 28, 8525-8530). The longest positive inserts found were sequenced using the dideoxy nucleotide chain termination method. One complete clone was obtained: clone 5A, 816 bases long, contained 59 bases of 5'-untranslated RNA, an open reading frame of 441 bases coding for 147 amino acids and a 3'-untranslated region of 316 bases. The derived amino acid sequence of Glycera globin P1 was in agreement with the partial amino acid sequences obtained by chemical methods. Three additional inserts obtained in the screening were also sequenced: the inferred amino acid sequences proved to be partial globin sequences which were different from each other and from the sequence of P1. Thus, the 'polymeric' fraction of the intracellular hemoglobin of Glycera probably consists of at least four different globin chains much like the 'monomeric' fraction. Comparison of the 'polymeric' sequence with the two known 'monomeric' sequences, M-II and M-IV, shows that they share 54 identical residues. At 74 positions, the identical residues in M-II and M-IV differ from the corresponding residue in P1, including at E-7, where P1 has a distal His, in contrast to Leu in M-II and M-IV. The alignment of Bashford et al. ((1987) J. Mol. Biol. 196, 199-216) and their templates were used to examine the principal differences between the two types of Glycera globin sequences. They appear to consist of uncommon surface amino acid residues at positions C6 (Phe vs. Ala), E10 (Val vs. Lys), E17 (Lys vs. Val), G1 (Arg vs. Lys), G10 (Met vs. Ala) and H5 (Arg vs. Lys). One or more of these residues could be responsible for the self-association exhibited by the 'polymeric' Glycera globins.
海生多毛纲动物双鳃内卷齿蚕的红细胞含有多种不同的单链血红蛋白,其中一些会自我缔合成一个“聚合”组分。基于化学方法测定的部分氨基酸序列合成了一个寡脱氧核苷酸探针,并用于筛选由内卷齿蚕红细胞的聚腺苷酸[poly(A⁺)]mRNA构建的cDNA文库(西蒙斯,P.C.和萨特利,J.D.(1989年)《生物化学》28卷,第8525 - 8530页)。使用双脱氧核苷酸链终止法对发现的最长阳性插入片段进行测序。获得了一个完整的克隆:克隆5A,长816个碱基,包含59个碱基的5'非翻译RNA、一个441个碱基的开放阅读框,编码147个氨基酸以及一个316个碱基的3'非翻译区。推导得到的内卷齿蚕球蛋白P1的氨基酸序列与通过化学方法获得的部分氨基酸序列一致。在筛选中获得的另外三个插入片段也进行了测序:推导得到的氨基酸序列证明是部分球蛋白序列,它们彼此不同且与P1的序列也不同。因此,内卷齿蚕细胞内血红蛋白的“聚合”组分可能至少由四种不同的球蛋白链组成,这很像“单体”组分。将“聚合”序列与两个已知的“单体”序列M - II和M - IV进行比较,结果表明它们共有54个相同的残基。在74个位置上,M - II和M - IV中的相同残基与P1中的相应残基不同,包括在E - 7位置,P1有一个远端组氨酸,而M - II和M - IV中是亮氨酸。使用巴什福德等人((1987年)《分子生物学杂志》196卷,第199 - 216页)的比对及其模板来研究这两种内卷齿蚕球蛋白序列之间的主要差异。它们似乎由C6(苯丙氨酸对丙氨酸)、E10(缬氨酸对赖氨酸)、E17(赖氨酸对缬氨酸)、G1(精氨酸对赖氨酸)、G10(甲硫氨酸对丙氨酸)和H5(精氨酸对赖氨酸)位置上不常见的表面氨基酸残基组成。这些残基中的一个或多个可能是“聚合”的内卷齿蚕球蛋白所表现出的自我缔合的原因。