University of Oklahoma Bioengineering Center, 100 East Boyd, Norman, Oklahoma 73019, United States.
Langmuir. 2012 Jun 26;28(25):9656-63. doi: 10.1021/la300806m. Epub 2012 Jun 14.
Particle lithography is a relatively simple, inexpensive technique used to pattern inorganics, metals, polymers, and biological molecules on the micro- and nanometer scales. Previously, we used particle lithography to create hexagonal patterns of protein dots in a protein resistant background of methoxy-poly(ethylene glycol)-silane (mPEG-sil). In this work, we describe a simple heating procedure to overcome a potential limitation of particle lithography: the simultaneous change in feature size and center-to-center spacing as the diameter of the spheres used in the lithographic mask is changed. Uniform heating was used to make single-diameter protein patterns with dot sizes of approximately 2-4 or 2-8 μm, depending on the diameter of the spheres used in the lithographic mask, while differential heating was used to make a continuous gradient of dot sizes of approximately 1-9 μm on a single surface. We demonstrate the applicability of these substrates by observing the differences in neutrophil spreading on patterned and unpatterned protein coated surfaces.
粒子光刻是一种相对简单、廉价的技术,可用于在微米和纳米尺度上对无机物、金属、聚合物和生物分子进行图案化。以前,我们使用粒子光刻在甲氧基聚(乙二醇)-硅烷(mPEG-sil)的蛋白质抗性背景中创建蛋白质点的六边形图案。在这项工作中,我们描述了一种简单的加热程序来克服粒子光刻的一个潜在限制:随着光刻掩模中使用的球体的直径的变化,特征尺寸和中心到中心间距同时发生变化。均匀加热用于制造具有约 2-4 或 2-8 μm 点大小的单直径蛋白质图案,具体取决于光刻掩模中使用的球体的直径,而差分加热用于在单个表面上制造约 1-9 μm 的连续梯度点大小。我们通过观察在图案化和未图案化的蛋白质涂层表面上中性粒细胞的扩散差异来证明这些基底的适用性。