Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
J Colloid Interface Sci. 2012 Aug 15;380(1):192-200. doi: 10.1016/j.jcis.2012.04.060. Epub 2012 May 4.
The structures resulting from convective-sedimentation assembly (CSA) of bimodal suspensions (4.1-10% solids) of strongly charged sulfate latex microspheres (zeta potential -55.9±1.8 mV at pH 8.0) and weakly charged Saccharomyces cerevisiae (zeta potential -18.7±0.71 mV at pH 8.0) on glass, polyester, polypropylene, and aluminum foil substrates was evaluated. This study shows how substrate wettability, suspension composition, particle size ratio and surface charge affect the deposition process and resulting coating microstructure (particle ordering and void space). Size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. S. cerevisiae behave like negatively-charged colloidal particles during CSA. CSA of particle-yeast blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-yeast interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Further optimization of the process should allow void space reduction and deposition of cells plus adhesive polymer particles into tightly packed adhesive monolayer coatings for biosensors, biophotoabsorbers, energy applications, and highly reactive microbial absorbers.
强电荷硫酸酯乳胶微球(zeta 电位-55.9±1.8 mV,pH 值 8.0)和弱电荷酿酒酵母(zeta 电位-18.7±0.71 mV,pH 值 8.0)的双峰悬浮液(固体含量 4.1-10%)在玻璃、聚酯、聚丙烯和铝箔衬底上进行对流-沉降组装(CSA)的结构得到了评估。本研究表明,衬底润湿性、悬浮液组成、粒径比和表面电荷如何影响沉积过程和所得涂层的微观结构(颗粒有序排列和空隙空间)。粒径比和电荷影响沉积、对流混合或相分离以及相对颗粒位置。衬底润湿性和悬浮液组成通过控制悬浮液在衬底上的输送和展开来影响涂层的微观结构。在 CSA 过程中,酿酒酵母的行为类似于带负电荷的胶体颗粒。颗粒-酵母混合物的 CSA 导致形成开放堆积结构(15-45%平均空隙空间),而不是通过单一成分系统可获得的紧密堆积涂层,这证实了聚合物颗粒-酵母之间存在显著的相互作用,并形成了颗粒聚集体,在沉积过程中破坏了涂层的微观结构。进一步优化该过程应该可以减少空隙空间,并将细胞和粘性聚合物颗粒沉积到用于生物传感器、生物光吸收器、能源应用和高反应性微生物吸收器的紧密堆积粘性单层涂层中。