School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States.
Langmuir. 2012 Jul 3;28(26):10064-71. doi: 10.1021/la3019474. Epub 2012 Jun 20.
In situ characterization of minute amounts of fluids that rapidly change their rheological properties is a challenge. In this paper, the rheological properties of fluids were evaluated by examining the behavior of magnetic nanorods in a rotating magnetic field. We proposed a theory describing the rotation of a magnetic nanorod in a fluid when its viscosity increases with time exponentially fast. To confirm the theory, we studied the time-dependent rheology of microdroplets of 2-hydroxyethyl-methacrylate (HEMA)/diethylene glycol dimethacylate (DEGDMA)-based hydrogel during photopolymerization synthesis. We demonstrated that magnetic rotational spectroscopy provides rich physicochemical information about the gelation process. The method allows one to completely specify the time-dependent viscosity by directly measuring characteristic viscosity and characteristic time. Remarkably, one can analyze not only the polymer solution, but also the suspension enriched with the gel domains being formed. Since the probing nanorods are measured in nanometers, this method can be used for the in vivo mapping of the rheological properties of biofluids and polymers on a microscopic level at short time intervals when other methods fall short.
对快速变化流变性能的微量流体进行原位表征是一项挑战。在本文中,通过考察在旋转磁场中磁性纳米棒的行为来评估流体的流变性能。我们提出了一个理论,描述了当流体的粘度随时间呈指数快速增加时,磁性纳米棒在流体中的旋转行为。为了验证该理论,我们研究了基于 2-羟乙基甲基丙烯酸酯(HEMA)/二乙二醇二甲基丙烯酸酯(DEGDMA)的水凝胶微滴在光聚合合成过程中的时变流变行为。我们证明了磁性旋转光谱法为凝胶化过程提供了丰富的物理化学信息。该方法可以通过直接测量特征粘度和特征时间来完全指定随时间变化的粘度。值得注意的是,不仅可以分析聚合物溶液,还可以分析富含正在形成的凝胶域的悬浮液。由于探测纳米棒的尺寸为纳米级,因此当其他方法无法实现时,该方法可以用于在短时间间隔内对生物流体和聚合物的微观流变性能进行体内映射。