Friese Ryan S, Ye Chun, Nievergelt Caroline M, Schork Andrew J, Mahapatra Nitish R, Rao Fangwen, Napolitan Philip S, Waalen Jill, Ehret Georg B, Munroe Patricia B, Schmid-Schönbein Geert W, Eskin Eleazar, O'Connor Daniel T
Department of Bioengineering, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA.
Circ Cardiovasc Genet. 2012 Aug 1;5(4):430-40. doi: 10.1161/CIRCGENETICS.111.962415. Epub 2012 Jun 5.
Essential hypertension, a common complex disease, displays substantial genetic influence. Contemporary methods to dissect the genetic basis of complex diseases such as the genomewide association study are powerful, yet a large gap exists between the fraction of population trait variance explained by such associations and total disease heritability.
We developed a novel, integrative method (combining animal models, transcriptomics, bioinformatics, molecular biology, and trait-extreme phenotypes) to identify candidate genes for essential hypertension and the metabolic syndrome. We first undertook transcriptome profiling on adrenal glands from blood pressure extreme mouse strains: the hypertensive BPH (blood pressure high) and hypotensive BPL (blood pressure low). Microarray data clustering revealed a striking pattern of global underexpression of intermediary metabolism transcripts in BPH. The MITRA algorithm identified a conserved motif in the transcriptional regulatory regions of the underexpressed metabolic genes, and we then hypothesized that regulation through this motif contributed to the global underexpression. Luciferase reporter assays demonstrated transcriptional activity of the motif through transcription factors HOXA3, SRY, and YY1. We finally hypothesized that genetic variation at HOXA3, SRY, and YY1 might predict blood pressure and other metabolic syndrome traits in humans. Tagging variants for each locus were associated with blood pressure in a human population blood pressure extreme sample with the most extensive associations for YY1 tagging single nucleotide polymorphism rs11625658 on systolic blood pressure, diastolic blood pressure, body mass index, and fasting glucose. Meta-analysis extended the YY1 results into 2 additional large population samples with significant effects preserved on diastolic blood pressure, body mass index, and fasting glucose.
The results outline an innovative, systematic approach to the genetic pathogenesis of complex cardiovascular disease traits and point to transcription factor YY1 as a potential candidate gene involved in essential hypertension and the cardiometabolic syndrome.
原发性高血压是一种常见的复杂疾病,具有显著的遗传影响。当代剖析复杂疾病遗传基础的方法,如全基因组关联研究,虽功能强大,但此类关联所解释的群体性状变异比例与疾病总遗传度之间仍存在巨大差距。
我们开发了一种新颖的综合方法(结合动物模型、转录组学、生物信息学、分子生物学和性状极端表型)来鉴定原发性高血压和代谢综合征的候选基因。我们首先对血压极端小鼠品系(高血压BPH(血压高)和低血压BPL(血压低))的肾上腺进行转录组分析。微阵列数据聚类显示BPH中介代谢转录本存在显著的整体低表达模式。MITRA算法在低表达代谢基因的转录调控区域鉴定出一个保守基序,然后我们推测通过该基序的调控导致了整体低表达。荧光素酶报告基因检测证明该基序通过转录因子HOXA3、SRY和YY1具有转录活性。我们最终推测HOXA3、SRY和YY1的基因变异可能预测人类的血压和其他代谢综合征性状。每个位点的标签变异与人类群体血压极端样本中的血压相关,其中YY1标签单核苷酸多态性rs11625658与收缩压、舒张压、体重指数和空腹血糖的关联最为广泛。荟萃分析将YY1的结果扩展到另外两个大型群体样本,对舒张压、体重指数和空腹血糖仍有显著影响。
这些结果概述了一种创新的、系统的复杂心血管疾病性状遗传发病机制研究方法,并指出转录因子YY1是参与原发性高血压和心脏代谢综合征的潜在候选基因。