Department of Biomolecular Engineering, Tokyo Institute of Technology, B-70, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
J Phys Chem A. 2012 Jul 5;116(26):7089-97. doi: 10.1021/jp300174n. Epub 2012 Jun 25.
A new mechanism of the oxygen evolving reaction catalyzed by H(2)O(terpy)Mn(μ-O)(2)Mn(terpy)OH(2) is proposed by using density functional theory. This proton coupled electron transfer (PCET) model shows reasonable barriers. Because in experiments excess oxidants (OCl(-) or HSO(5)(-)) are required to evolve oxygen from water, we considered the Mn(2) complex neutralized by three counterions. Structure optimization made the coordinated OCl(-) withdraw a H(+) from the water ligand and produces the reaction space for H(2)O(2) formation with the deprotonated OH(-) ligand. The reaction barrier for the H(2)O(2) formation from OH(-) and protonated OCl(-) depends significantly on the system charge and is 14.0 kcal/mol when the system is neutralized. The H(2)O(2) decomposes to O(2) during two PCET processes to the Mn(2) complex, both with barriers lower than 12.0 kcal/mol. In both PCET processes the spin moment of transferred electrons prefers to be parallel to that of Mn 3d electrons because of the exchange interaction. This model thus explains how the triplet O(2) molecule is produced.
用密度泛函理论提出了H(2)O(terpy)Mn(μ-O)(2)Mn(terpy)OH(2)催化的氧析出反应的新机制。该质子耦合电子转移(PCET)模型显示出合理的势垒。由于在实验中需要过量的氧化剂(OCl(-)或 HSO(5)(-))才能从水中产生氧气,我们考虑了由三个抗衡离子中和的 Mn(2)配合物。结构优化使配位的 OCl(-)从水分子中提取一个 H(+),并为具有去质子化的 OH(-)配体的 H(2)O(2)形成提供了反应空间。从 OH(-)和质子化的 OCl(-)形成 H(2)O(2)的反应势垒显著依赖于体系电荷,当体系中和时为 14.0 kcal/mol。H(2)O(2)在两个 PCET 过程中分解为 O(2),回到 Mn(2)配合物,两个过程的势垒都低于 12.0 kcal/mol。在两个 PCET 过程中,由于交换相互作用,转移电子的自旋矩倾向于与 Mn 3d 电子的自旋矩平行。因此,该模型解释了如何产生三重态 O(2)分子。