Department of Computer Science, National Textile University, Faisalabad, 37610, Pakistan.
Skin Res Technol. 2013 Feb;19(1):e93-102. doi: 10.1111/j.1600-0846.2012.00614.x. Epub 2012 Jun 7.
BACKGROUND/PURPOSE: Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques.
In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIELab* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification.
The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880.
The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system.
背景/目的:基于临床 ABCD 规则的黑色素瘤识别被广泛用于皮肤科图像中色素性皮肤病变的临床诊断。然而,由于使用了无效的计算机技术,目前基于 ABCD 标准对恶性和痣病变进行分类的计算机辅助诊断(CAD)系统并不完善。
在这项研究中,我们提出了一种新的黑色素瘤识别系统(MRS),通过更专注于使用 ABCD 标准从病变中提取特征。完整的 MRS 系统包括以下六个主要步骤:转换到 CIELab*颜色空间、预处理以增强肿瘤区域、去除黑框和毛发伪影、肿瘤区域分割、使用 ABCD 标准进行特征量化和归一化,以及最后是特征选择和分类。
总共对 120 张皮肤镜图像进行了黑色素瘤-痣病变的 MRS 系统测试。为了测试 MRS 诊断分类器的性能,使用了接收器操作特征曲线下的面积(AUC)。所提出的分类器实现了 88.2%的敏感性、91.3%的特异性和 0.880 的 AUC。
实验结果表明,所提出的 MRS 系统可以准确地区分恶性和良性病变。MRS 技术是全自动的,可以很容易地集成到现有的 CAD 系统中。为了提高 MRS 的分类准确性,可以包括 CASH 模式识别技术、皮肤科医生的视觉检查、来自患者的上下文信息以及组织病理学检查,以研究对该系统的影响。