Suppr超能文献

计算机辅助的皮肤镜图像模式分类系统。

Computer-aided pattern classification system for dermoscopy images.

机构信息

Department of Computer Science, National Textile University, Faisalaba-37610, Pakistan.

出版信息

Skin Res Technol. 2012 Aug;18(3):278-89. doi: 10.1111/j.1600-0846.2011.00562.x. Epub 2011 Aug 21.

Abstract

BACKGROUND

Computer-aided pattern classification of melanoma and other pigmented skin lesions is one of the most important tasks for clinical diagnosis. To differentiate between benign and malignant lesions, the extraction of color, architectural order, symmetry of pattern and homogeneity (CASH) is a challenging task.

METHODS

In this article, a novel pattern classification system (PCS) based on the clinical CASH rule is presented to classify among six classes of patterns. The PCS system consists of the following five steps: transformation to the CIE Lab* color space, pre-processing to enhance the tumor region and removal of hairs, tumor-area segmentation, color and texture feature extraction, and finally, classification based on a multiclass support vector machine.

RESULTS

The PCS system is tested on a total of 180 dermoscopic images. To test the performance of the PCS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 91.64%, specificity of 94.14%, and AUC of 0.948.

CONCLUSION

The experimental results demonstrate that the proposed pattern classifier is highly accurate and classify between benign and malignant lesions into some extend. The PCS method is fully automatic and can accurately detect different patterns from dermoscopy images using color and texture properties. Additional pattern features can be included to investigate the impact of pattern classification based on the CASH rule.

摘要

背景

计算机辅助的黑素瘤和其他色素性皮肤病变的模式分类是临床诊断的最重要任务之一。为了区分良性和恶性病变,提取颜色、结构有序性、图案对称性和同质性(CASH)是一项具有挑战性的任务。

方法

在本文中,提出了一种基于临床 CASH 规则的新型模式分类系统(PCS),用于对六种模式进行分类。PCS 系统由以下五个步骤组成:转换到 CIE Lab*颜色空间、增强肿瘤区域和去除毛发的预处理、肿瘤区域分割、颜色和纹理特征提取,最后基于多类支持向量机进行分类。

结果

该 PCS 系统总共测试了 180 张皮肤镜图像。为了测试 PCS 诊断分类器的性能,利用接收器操作特性曲线下的面积(AUC)。所提出的分类器的灵敏度为 91.64%,特异性为 94.14%,AUC 为 0.948。

结论

实验结果表明,所提出的模式分类器具有很高的准确性,可以在一定程度上区分良性和恶性病变。PCS 方法是全自动的,可以使用颜色和纹理属性准确地从皮肤镜图像中检测不同的模式。可以包括其他模式特征,以研究基于 CASH 规则的模式分类的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验