Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Belgium.
Am J Physiol Cell Physiol. 2012 Aug 15;303(4):C406-15. doi: 10.1152/ajpcell.00343.2011. Epub 2012 Jun 6.
Delayed rectifier voltage-gated K(+) (K(V)) channels are important determinants of neuronal excitability. However, the large number of K(V) subunits poses a major challenge to establish the molecular composition of the native neuronal K(+) currents. A large part (∼60%) of the delayed rectifier current (I(K)) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric K(V)2.1 and heterotetrameric channels of K(V)2 subunits with silent K(V) subunits (K(V)S), while a contribution of K(V)1 channels has also been demonstrated. Because K(V)3 subunits also generate delayed rectifier currents, we investigated the contribution of K(V)3 subunits to I(K) in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the K(V)2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of I(K) could include K(V)1, K(V)3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of K(V)2 and K(V)2/K(V)S, and K(V)1 subunits to I(K) in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (∼19% of total I(K)) remained with biophysical properties that corresponded to those of K(V)3 currents obtained in expression systems. Using RT-PCR, we detected K(V)3.1-3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using K(V)3.1-specific antibodies confirmed the presence of K(V)3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (∼19%) of K(V)3-containing channels to I(K) in small mouse DRG neurons, supporting a substantial role for K(V)3 subunits in these neurons.
延迟整流型电压门控钾(K(+))(K(V))通道是神经元兴奋性的重要决定因素。然而,大量的 K(V)亚基对确定天然神经元 K(+)电流的分子组成构成了重大挑战。已经表明,在小型小鼠背根神经节(DRG)神经元中的延迟整流电流(I(K))的大部分(约 60%)由同源四聚体 K(V)2.1 和由沉默 K(V)亚基(K(V)S)组成的异源四聚体 K(V)2 通道组成,而 K(V)1 通道也有贡献。因为 K(V)3 亚基也产生延迟整流电流,所以我们研究了 K(V)3 亚基对小型小鼠 DRG 神经元中 I(K)的贡献。在 stromatoxin(ScTx)预处理以阻断包含 K(V)2 的成分后,应用 1 mM TEA 会引起明显的额外阻断,表明 I(K)中 ScTx 不敏感的部分可能包括 K(V)1、K(V)3 和/或 M 电流通道(KCNQ2/3)。结合 ScTx 和 dendrotoxin 证实了 K(V)2 和 K(V)2/K(V)S 以及 K(V)1 亚基对小型小鼠 DRG 神经元中 I(K)的相关贡献。在应用这些毒素后,仍然存在显著的 TEA 敏感电流(约占总 I(K)的 19%),其具有与在表达系统中获得的 K(V)3 电流相对应的生物物理特性。使用 RT-PCR,我们在 DRG 神经元中检测到 K(V)3.1-3 mRNA。此外,使用 K(V)3.1 特异性抗体的 Western blot 和免疫细胞化学证实了 K(V)3.1 在培养的 DRG 神经元中的存在。这些生物物理、药理学和分子结果表明,含有 K(V)3 的通道对小型小鼠 DRG 神经元中的 I(K)有重要贡献(约 19%),支持 K(V)3 亚基在这些神经元中的重要作用。