Suppr超能文献

Kv3通道:快速放电、神经递质释放和神经元耐力的促成因素。

Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance.

作者信息

Kaczmarek Leonard K, Zhang Yalan

机构信息

Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.

出版信息

Physiol Rev. 2017 Oct 1;97(4):1431-1468. doi: 10.1152/physrev.00002.2017.

Abstract

The intrinsic electrical characteristics of different types of neurons are shaped by the K channels they express. From among the more than 70 different K channel genes expressed in neurons, Kv3 family voltage-dependent K channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.

摘要

不同类型神经元的内在电特性由它们所表达的钾通道塑造。在神经元中表达的70多种不同钾通道基因中,Kv3家族电压依赖性钾通道与某些神经元以高达1000赫兹的高速率产生动作电位和释放神经递质的能力独特相关。一般来说,四个Kv3通道Kv3.1 - Kv3.4具有在比其他通道更正的电位下快速激活和失活的特性。每个Kv3通道基因可产生多种蛋白质异构体,这有助于听觉脑干神经元、快速放电的GABA能中间神经元和小脑浦肯野细胞等神经元的高频放电,并有助于调节许多神经元终末的神经递质释放。不同的Kv3通道具有独特的表达模式和生物物理特性,并受到蛋白激酶的不同方式调节。在本综述中,我们涵盖了Kv3通道的功能、定位和调节,并描述了持续神经元活动的变化如何改变通道的水平和特性。我们还涵盖了这些通道与其他蛋白质的蛋白质 - 蛋白质相互作用如何影响神经元功能,以及Kv3通道的突变或异常调节如何与共济失调、癫痫、精神分裂症和阿尔茨海默病等神经疾病相关联。

相似文献

1
Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance.
Physiol Rev. 2017 Oct 1;97(4):1431-1468. doi: 10.1152/physrev.00002.2017.
2
K3.1/K3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons.
Neuropharmacology. 2017 May 15;118:102-112. doi: 10.1016/j.neuropharm.2017.02.024. Epub 2017 Feb 24.
3
Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.
J Neurophysiol. 2016 Jul 1;116(1):106-21. doi: 10.1152/jn.00174.2016. Epub 2016 Apr 6.
4
Contributions of Kv3 channels to neuronal excitability.
Ann N Y Acad Sci. 1999 Apr 30;868:304-43. doi: 10.1111/j.1749-6632.1999.tb11295.x.
9
Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex.
Neuroscience. 2010 Mar 31;166(3):952-69. doi: 10.1016/j.neuroscience.2010.01.020. Epub 2010 Jan 18.
10
A Novel Modulator of Kv3 Potassium Channels Regulates the Firing of Parvalbumin-Positive Cortical Interneurons.
J Pharmacol Exp Ther. 2015 Sep;354(3):251-60. doi: 10.1124/jpet.115.225748. Epub 2015 Jun 17.

引用本文的文献

1
Mechanistic correlation of potassium channel sensing and nitric oxide activity in neuroinflammation.
Mol Biol Rep. 2025 Sep 8;52(1):874. doi: 10.1007/s11033-025-10954-w.
5
Kv3 channel agonist ameliorates the phenotype of a mouse model of amyotrophic lateral sclerosis.
Acta Neuropathol Commun. 2025 Jul 14;13(1):153. doi: 10.1186/s40478-025-02067-z.
7
Long-term muscarinic inhibition increases intrinsic excitability through the upregulation of A-type potassium currents in cortical neurons.
Front Cell Dev Biol. 2025 May 27;13:1570424. doi: 10.3389/fcell.2025.1570424. eCollection 2025.
8
Structural insights into the function, dysfunction and modulation of Kv3 channels.
Neuropharmacology. 2025 Sep 1;275:110483. doi: 10.1016/j.neuropharm.2025.110483. Epub 2025 Apr 25.
9
A novel mechanism for short-term post-tetanic plasticity in thalamocortical neurons.
Brain Res. 2025 Jul 15;1859:149654. doi: 10.1016/j.brainres.2025.149654. Epub 2025 Apr 21.

本文引用的文献

2
K3.1/K3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons.
Neuropharmacology. 2017 May 15;118:102-112. doi: 10.1016/j.neuropharm.2017.02.024. Epub 2017 Feb 24.
4
Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.
Neuron. 2016 Jul 20;91(2):370-83. doi: 10.1016/j.neuron.2016.05.035. Epub 2016 Jun 23.
5
Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.
J Neurophysiol. 2016 Jul 1;116(1):106-21. doi: 10.1152/jn.00174.2016. Epub 2016 Apr 6.
6
Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.
Cell. 2016 Apr 7;165(2):434-448. doi: 10.1016/j.cell.2016.02.009. Epub 2016 Mar 17.
8
Fragile X mental retardation protein controls ion channel expression and activity.
J Physiol. 2016 Oct 15;594(20):5861-5867. doi: 10.1113/JP270675. Epub 2016 May 5.
9
Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.
Nat Commun. 2015 Dec 17;6:10173. doi: 10.1038/ncomms10173.
10
Kv3.3 potassium channels and spinocerebellar ataxia.
J Physiol. 2016 Aug 15;594(16):4677-84. doi: 10.1113/JP271343. Epub 2015 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验