Department of Mechanical Engineering & Materials Science, Rice University, Houston, Texas 77005, USA.
Nat Commun. 2012 Jun 6;3:879. doi: 10.1038/ncomms1833.
Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.
在单根纳米线上构建完整的多组件器件是实现电子应用小型化的一种很有前途的策略。在这里,我们展示了一种具有同轴不对称 Cu-Cu2O-C 结构的单根纳米线电容器,该电容器是通过两步化学反应和气相沉积法制备的。从单个纳米线器件测量的电容对应于约 140 μF cm(-2),超过了先前报道的金属-绝缘体-金属微电容器的值,并且比经典静电学预测的值高出一个数量级以上。量子力学计算表明,这种异常高的电容可能归因于介电-金属界面的负量子电容,在纳米尺度上显著增强。