Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
Biostatistics. 2012 Sep;13(4):567-79. doi: 10.1093/biostatistics/kxs012. Epub 2012 Jun 6.
Contact-tracing data (CTD) collected from disease outbreaks has received relatively little attention in the epidemic modeling literature because it is thought to be unreliable: infection sources might be wrongly attributed, or data might be missing due to resource constraints in the questionnaire exercise. Nevertheless, these data might provide a rich source of information on the disease transmission rate. This paper presents a novel methodology for combining CTD with rate-based contact network data to improve posterior precision, and therefore predictive accuracy. We present an advancement in Bayesian inference for epidemics that assimilates these data and is robust to partial contact tracing. Using a simulation study based on the British poultry industry, we show how the presence of CTD improves posterior predictive accuracy and can directly inform a more effective control strategy.
接触者追踪数据(CTD)在传染病模型文献中受到的关注相对较少,因为它被认为是不可靠的:感染源可能被错误归因,或者由于问卷调查资源的限制,数据可能会缺失。然而,这些数据可能为疾病传播率提供了丰富的信息来源。本文提出了一种将 CTD 与基于速率的接触网络数据相结合的新方法,以提高后验精度,从而提高预测精度。我们提出了一种用于传染病的贝叶斯推断的改进方法,该方法可以同化这些数据,并对部分接触者追踪具有鲁棒性。通过基于英国家禽业的模拟研究,我们展示了 CTD 的存在如何提高后验预测准确性,并可以直接为更有效的控制策略提供信息。