Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Exp Neurol. 2012 Aug;236(2):327-35. doi: 10.1016/j.expneurol.2012.05.016. Epub 2012 Jun 4.
The cannabinoid receptor agonist, WIN 55,212-2, increases extracellular norepinephrine levels in the rat frontal cortex under basal conditions, likely via desensitization of inhibitory α2-adrenergic receptors located on norepinephrine terminals. Here, the effect of WIN 55,212-2 on stress-induced norepinephrine release was assessed in the medial prefrontal cortex (mPFC), in adult male Sprague-Dawley rats using in vivo microdialysis. Systemic administration of WIN 55,212-2 30 min prior to stressor exposure prevented stress-induced cortical norepinephrine release induced by a single exposure to swim when compared to vehicle. To further probe cortical cannabinoid-adrenergic interactions, postsynaptic α2-adrenergic receptor (AR)-mediated responses were assessed in mPFC pyramidal neurons using electrophysiological analysis in an in vitro cortical slice preparation. We confirm prior studies showing that clonidine increases cortical pyramidal cell excitability and that this was unaffected by exposure to acute stress. WIN 55,212-2, via bath application, blocked postsynaptic α2-AR mediated responses in cortical neurons irrespective of exposure to stress. Interestingly, stress exposure prevented the desensitization of α2-AR mediated responses produced by a history of cannabinoid exposure. Together, these data indicate the stress-dependent nature of cannabinoid interactions via both pre- and postsynaptic ARs. In summary, microdialysis data indicate that cannabinoids restrain stress-induced cortical NE efflux. Electrophysiology data indicate that cannabinoids also restrain cortical cell excitability under basal conditions; however, stress interferes with these CB1-α2 AR interactions, potentially contributing to over-activation of pyramidal neurons in mPFC. Overall, cannabinoids are protective of the NE system and cortical excitability but stress can derail this protective effect, potentially contributing to stress-related psychopathology. These data add to the growing evidence of complex, stress-dependent modulation of monoaminergic systems by cannabinoids and support the potential use of cannabinoids in the treatment of stress-induced noradrenergic dysfunction.
大麻素受体激动剂 WIN 55,212-2 在基础条件下增加大鼠前额皮质的细胞外去甲肾上腺素水平,可能通过位于去甲肾上腺素末梢的抑制性α2-肾上腺素能受体脱敏来实现。在这里,使用活体微透析法在成年雄性 Sprague-Dawley 大鼠的内侧前额皮质 (mPFC) 中评估了 WIN 55,212-2 对应激诱导的去甲肾上腺素释放的影响。与载体相比,WIN 55,212-2 在应激暴露前 30 分钟系统给药可防止单次游泳暴露引起的皮质去甲肾上腺素释放。为了进一步探究皮质内大麻素-肾上腺素能相互作用,在体外皮质切片制备中使用电生理分析评估 mPFC 锥体神经元中的突触后α2-肾上腺素能受体 (AR) 介导的反应。我们证实了先前的研究表明,可乐定增加皮质锥体细胞兴奋性,而急性应激暴露对此没有影响。WIN 55,212-2 通过灌流应用,无论是否暴露于应激,均可阻断皮质神经元中突触后α2-AR 介导的反应。有趣的是,应激暴露可防止由于先前暴露于大麻素而产生的α2-AR 介导反应的脱敏。总之,这些数据表明,通过前突触和后突触 AR,大麻素的相互作用具有应激依赖性。综上所述,微透析数据表明大麻素可抑制应激诱导的皮质 NE 外排。电生理学数据表明,大麻素在基础条件下也可抑制皮质细胞兴奋性;然而,应激会干扰这些 CB1-α2 AR 相互作用,可能导致 mPFC 中的锥体神经元过度兴奋。总体而言,大麻素对 NE 系统和皮质兴奋性具有保护作用,但应激会破坏这种保护作用,可能导致与应激相关的精神病理学。这些数据增加了大麻素对单胺能系统的复杂、应激依赖性调节的证据,并支持大麻素在治疗应激诱导的去甲肾上腺素功能障碍中的潜在用途。