Suppr超能文献

运动训练与肌肉微血管氧合:一氧化氮的功能作用。

Exercise training and muscle microvascular oxygenation: functional role of nitric oxide.

机构信息

Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA.

出版信息

J Appl Physiol (1985). 2012 Aug 15;113(4):557-65. doi: 10.1152/japplphysiol.00151.2012. Epub 2012 Jun 7.

Abstract

Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-L-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2 peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml · kg(-1) · min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.

摘要

运动训练会引起骨骼肌的多种适应性改变,可能会改善局部的氧输送-利用匹配(即 Po(2)mv)。我们假设运动训练后从休息到收缩时,一氧化氮(NO)功能的增加是改善肌肉 Po(2)mv 动力学的内在因素。健康的年轻 Sprague-Dawley 大鼠被分为久坐(n = 18)或渐进式跑步机运动训练(n = 10;5 天/周,6-8 周,最终每天 35 m/min、-14%坡度下 60 分钟的工作量)组。在休息和 1-Hz 颤搐收缩期间,通过磷光猝灭法在斜方肌中测量 Po(2)mv,在对照(Krebs-Henseleit 溶液)、硝普钠(SNP,NO 供体;300 μM)和 N(G)-硝基-L-精氨酸甲酯(l-NAME,非特异性一氧化氮合酶阻断剂;1.5 mM)灌注条件下。与久坐的大鼠相比,运动训练的大鼠具有更高的峰值摄氧量(Vo(2 peak)(81 ± 1 对 72 ± 2 ml·kg(-1)·min(-1);P < 0.05)。与对照相比,SNP 使久坐大鼠在整个收缩过程中 Po(2)mv 下降更慢(τ(1);第一成分的时间常数)(久坐:8.1 ± 0.6;训练:15.2 ± 2.8 s)。与对照相比,SNP 使久坐大鼠的 τ(1)减慢的程度更大(久坐:38.7 ± 5.6;训练:26.8 ± 4.1 s;P > 0.05),而 l-NAME 则消除了久坐和训练大鼠之间 τ(1)的差异(久坐:12.0 ± 1.7;训练:11.2 ± 1.4 s;P < 0.05)。我们的结果表明,耐力运动训练导致收缩开始后代谢瞬变时肌肉微血管氧合增加(即 Po(2)mv 动力学较慢),部分原因是一氧化氮介导的功能增加,这可能是训练引起的代谢适应的重要机制。

相似文献

1
Exercise training and muscle microvascular oxygenation: functional role of nitric oxide.
J Appl Physiol (1985). 2012 Aug 15;113(4):557-65. doi: 10.1152/japplphysiol.00151.2012. Epub 2012 Jun 7.
2
Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H690-8. doi: 10.1152/ajpheart.00901.2013. Epub 2014 Jan 10.
3
Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions.
Acta Physiol (Oxf). 2010 Oct;200(2):159-69. doi: 10.1111/j.1748-1716.2010.02137.x.
4
The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction.
Microvasc Res. 2013 Jan;85:104-11. doi: 10.1016/j.mvr.2012.11.006. Epub 2012 Nov 19.
5
(-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.
Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H206-14. doi: 10.1152/ajpheart.00714.2012. Epub 2012 Nov 9.
6
Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats.
J Appl Physiol (1985). 2017 Jan 1;122(1):153-160. doi: 10.1152/japplphysiol.00367.2016. Epub 2016 Oct 27.
7
Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H1076-84. doi: 10.1152/ajpheart.00477.2012. Epub 2012 Aug 24.
8
Muscle microvascular oxygenation in chronic heart failure: role of nitric oxide availability.
Acta Physiol (Oxf). 2006 Sep;188(1):3-13. doi: 10.1111/j.1748-1716.2006.01598.x.
9
Effects of altered nitric oxide availability on rat muscle microvascular oxygenation during contractions.
Acta Physiol (Oxf). 2006 Mar;186(3):223-32. doi: 10.1111/j.1748-1716.2006.01523.x.
10
Exercise training enhances flow-induced vasodilation in skeletal muscle resistance arteries of aged rats: role of PGI2 and nitric oxide.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3119-27. doi: 10.1152/ajpheart.00588.2006. Epub 2007 Mar 2.

引用本文的文献

1
Targeting lung heme iron by aerosol hemopexin adminstration in sickle cell disease pulmonary hypertension.
Free Radic Biol Med. 2025 Mar 1;229:458-473. doi: 10.1016/j.freeradbiomed.2025.01.045. Epub 2025 Jan 23.
4
Microvascular Adaptations to Muscle Stretch: Findings From Animals and the Elderly.
Front Physiol. 2022 Jul 4;13:939459. doi: 10.3389/fphys.2022.939459. eCollection 2022.
6
Hemopexin dosing improves cardiopulmonary dysfunction in murine sickle cell disease.
Free Radic Biol Med. 2021 Nov 1;175:95-107. doi: 10.1016/j.freeradbiomed.2021.08.238. Epub 2021 Aug 31.
7
The effect of dietary nitrate on exercise capacity in chronic kidney disease: a randomized controlled pilot study.
Nitric Oxide. 2021 Jan 1;106:17-23. doi: 10.1016/j.niox.2020.10.002. Epub 2020 Oct 17.
8
The role of vascular function on exercise capacity in health and disease.
J Physiol. 2021 Feb;599(3):889-910. doi: 10.1113/JP278931. Epub 2020 Mar 3.
9
Effect of healthy aging and sex on middle cerebral artery blood velocity dynamics during moderate-intensity exercise.
Am J Physiol Heart Circ Physiol. 2018 Sep 1;315(3):H492-H501. doi: 10.1152/ajpheart.00129.2018. Epub 2018 May 18.
10
Probing under pressure: a look inside the compartmental haemodynamics of skeletal muscle during rest and contraction.
J Physiol. 2018 Jun;596(11):2035-2036. doi: 10.1113/JP276078. Epub 2018 May 2.

本文引用的文献

2
Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats.
J Appl Physiol (1985). 2011 Oct;111(4):989-98. doi: 10.1152/japplphysiol.00490.2011. Epub 2011 Jul 14.
3
Acute effects of hydrogen peroxide on skeletal muscle microvascular oxygenation from rest to contractions.
J Appl Physiol (1985). 2011 May;110(5):1290-8. doi: 10.1152/japplphysiol.01489.2010. Epub 2011 Mar 3.
4
Effects of aging and exercise training on spinotrapezius muscle microvascular PO2 dynamics and vasomotor control.
J Appl Physiol (1985). 2011 Mar;110(3):695-704. doi: 10.1152/japplphysiol.01084.2010. Epub 2011 Jan 6.
5
Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions.
Acta Physiol (Oxf). 2010 Oct;200(2):159-69. doi: 10.1111/j.1748-1716.2010.02137.x.
6
The effects of acute and chronic exercise on the vasculature.
Acta Physiol (Oxf). 2010 Aug;199(4):441-50. doi: 10.1111/j.1748-1716.2010.02127.x. Epub 2010 Mar 26.
7
Aging impacts microvascular oxygen pressures during recovery from contractions in rat skeletal muscle.
Respir Physiol Neurobiol. 2009 Dec 31;169(3):315-22. doi: 10.1016/j.resp.2009.10.005. Epub 2009 Oct 13.
8
Reproducibility of endurance capacity and VO2peak in male Sprague-Dawley rats.
J Appl Physiol (1985). 2009 Apr;106(4):1072-8. doi: 10.1152/japplphysiol.91566.2008. Epub 2009 Feb 12.
9
The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle.
Microvasc Res. 2009 Mar;77(2):113-9. doi: 10.1016/j.mvr.2008.11.001. Epub 2008 Nov 27.
10
Effect of eccentric exercise-induced muscle damage on the dynamics of muscle oxygenation and pulmonary oxygen uptake.
J Appl Physiol (1985). 2008 Nov;105(5):1413-21. doi: 10.1152/japplphysiol.90743.2008. Epub 2008 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验