Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA.
J Appl Physiol (1985). 2012 Aug 15;113(4):557-65. doi: 10.1152/japplphysiol.00151.2012. Epub 2012 Jun 7.
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-L-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2 peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml · kg(-1) · min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.
运动训练会引起骨骼肌的多种适应性改变,可能会改善局部的氧输送-利用匹配(即 Po(2)mv)。我们假设运动训练后从休息到收缩时,一氧化氮(NO)功能的增加是改善肌肉 Po(2)mv 动力学的内在因素。健康的年轻 Sprague-Dawley 大鼠被分为久坐(n = 18)或渐进式跑步机运动训练(n = 10;5 天/周,6-8 周,最终每天 35 m/min、-14%坡度下 60 分钟的工作量)组。在休息和 1-Hz 颤搐收缩期间,通过磷光猝灭法在斜方肌中测量 Po(2)mv,在对照(Krebs-Henseleit 溶液)、硝普钠(SNP,NO 供体;300 μM)和 N(G)-硝基-L-精氨酸甲酯(l-NAME,非特异性一氧化氮合酶阻断剂;1.5 mM)灌注条件下。与久坐的大鼠相比,运动训练的大鼠具有更高的峰值摄氧量(Vo(2 peak)(81 ± 1 对 72 ± 2 ml·kg(-1)·min(-1);P < 0.05)。与对照相比,SNP 使久坐大鼠在整个收缩过程中 Po(2)mv 下降更慢(τ(1);第一成分的时间常数)(久坐:8.1 ± 0.6;训练:15.2 ± 2.8 s)。与对照相比,SNP 使久坐大鼠的 τ(1)减慢的程度更大(久坐:38.7 ± 5.6;训练:26.8 ± 4.1 s;P > 0.05),而 l-NAME 则消除了久坐和训练大鼠之间 τ(1)的差异(久坐:12.0 ± 1.7;训练:11.2 ± 1.4 s;P < 0.05)。我们的结果表明,耐力运动训练导致收缩开始后代谢瞬变时肌肉微血管氧合增加(即 Po(2)mv 动力学较慢),部分原因是一氧化氮介导的功能增加,这可能是训练引起的代谢适应的重要机制。