Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas;
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H690-8. doi: 10.1152/ajpheart.00901.2013. Epub 2014 Jan 10.
Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.
慢性心力衰竭(CHF)会损害一氧化氮(NO)介导的骨骼肌 O2 输送-利用匹配的调节,使得在代谢需求增加时,微血管氧合下降得更快(即,PO2mv 动力学加快)。相反,运动训练通过 NO 依赖性机制改善健康年轻个体收缩开始时的肌肉 PO2mv 动力学(减慢)。我们假设运动训练会通过改善 NO 介导的功能部分改善 CHF 大鼠收缩肌肉的微血管氧合。将左心室舒张末期压力为 17±2mmHg 的 CHF 大鼠分为安静(n=11)或进行性跑步机运动训练(n=11;每周 5 天,持续 6-8 周,最终每天 35m/min 下坡跑 60min)组。在休息和 1Hz 颤搐收缩期间,通过磷光猝灭法在斜方肌中测量 PO2mv,在对照(Krebs-Henseleit 溶液)、硝普钠(SNP;NO 供体;300μM)和 N(G)-硝基-L-精氨酸甲酯(L-NAME,非特异性一氧化氮合酶阻断;1.5mM)灌注条件下。与安静的 CHF 大鼠相比,运动训练的 CHF 大鼠具有更高的峰值摄氧量和斜方肌柠檬酸合酶活性(p<0.05)。与安静的 CHF 大鼠相比,训练后的大鼠在收缩期间 PO2mv 下降的整体速度(平均响应时间;MRT)明显减慢(安静:20.8±1.4,训练:32.3±3.0s;p<0.05),而 L-NAME 并不能消除这种作用(安静:16.8±1.5,训练:31.0±3.4s;p>0.05)。与对照相比,SNP 增加了两组的 MRT,使得训练后的 CHF 大鼠具有更慢的动力学(安静:43.0±6.8,训练:55.5±7.8s;p<0.05)。在 CHF 大鼠收缩开始后,改善的 NO 介导的功能不是运动训练引起的骨骼肌微血管氧合改善(PO2mv 动力学减慢)所必需的。