Suppr超能文献

心力衰竭时骨骼肌微血管氧合动力学:运动训练和一氧化氮介导的功能。

Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.

机构信息

Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas;

出版信息

Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H690-8. doi: 10.1152/ajpheart.00901.2013. Epub 2014 Jan 10.

Abstract

Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.

摘要

慢性心力衰竭(CHF)会损害一氧化氮(NO)介导的骨骼肌 O2 输送-利用匹配的调节,使得在代谢需求增加时,微血管氧合下降得更快(即,PO2mv 动力学加快)。相反,运动训练通过 NO 依赖性机制改善健康年轻个体收缩开始时的肌肉 PO2mv 动力学(减慢)。我们假设运动训练会通过改善 NO 介导的功能部分改善 CHF 大鼠收缩肌肉的微血管氧合。将左心室舒张末期压力为 17±2mmHg 的 CHF 大鼠分为安静(n=11)或进行性跑步机运动训练(n=11;每周 5 天,持续 6-8 周,最终每天 35m/min 下坡跑 60min)组。在休息和 1Hz 颤搐收缩期间,通过磷光猝灭法在斜方肌中测量 PO2mv,在对照(Krebs-Henseleit 溶液)、硝普钠(SNP;NO 供体;300μM)和 N(G)-硝基-L-精氨酸甲酯(L-NAME,非特异性一氧化氮合酶阻断;1.5mM)灌注条件下。与安静的 CHF 大鼠相比,运动训练的 CHF 大鼠具有更高的峰值摄氧量和斜方肌柠檬酸合酶活性(p<0.05)。与安静的 CHF 大鼠相比,训练后的大鼠在收缩期间 PO2mv 下降的整体速度(平均响应时间;MRT)明显减慢(安静:20.8±1.4,训练:32.3±3.0s;p<0.05),而 L-NAME 并不能消除这种作用(安静:16.8±1.5,训练:31.0±3.4s;p>0.05)。与对照相比,SNP 增加了两组的 MRT,使得训练后的 CHF 大鼠具有更慢的动力学(安静:43.0±6.8,训练:55.5±7.8s;p<0.05)。在 CHF 大鼠收缩开始后,改善的 NO 介导的功能不是运动训练引起的骨骼肌微血管氧合改善(PO2mv 动力学减慢)所必需的。

相似文献

1
Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H690-8. doi: 10.1152/ajpheart.00901.2013. Epub 2014 Jan 10.
2
Exercise training and muscle microvascular oxygenation: functional role of nitric oxide.
J Appl Physiol (1985). 2012 Aug 15;113(4):557-65. doi: 10.1152/japplphysiol.00151.2012. Epub 2012 Jun 7.
3
Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats.
J Appl Physiol (1985). 2017 Jan 1;122(1):153-160. doi: 10.1152/japplphysiol.00367.2016. Epub 2016 Oct 27.
4
Progressive chronic heart failure slows the recovery of microvascular O2 pressures after contractions in the rat spinotrapezius muscle.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1755-61. doi: 10.1152/ajpheart.00590.2010. Epub 2010 Sep 3.
5
Muscle microvascular oxygenation in chronic heart failure: role of nitric oxide availability.
Acta Physiol (Oxf). 2006 Sep;188(1):3-13. doi: 10.1111/j.1748-1716.2006.01598.x.
6
Vascular K channels mitigate severe muscle O delivery-utilization mismatch during contractions in chronic heart failure rats.
Respir Physiol Neurobiol. 2017 Apr;238:33-40. doi: 10.1016/j.resp.2017.01.009. Epub 2017 Jan 22.
7
Impact of cell-free hemoglobin on contracting skeletal muscle microvascular oxygen pressure dynamics.
Nitric Oxide. 2018 Jun 1;76:29-36. doi: 10.1016/j.niox.2018.03.005. Epub 2018 Mar 8.
8
Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions.
Acta Physiol (Oxf). 2010 Oct;200(2):159-69. doi: 10.1111/j.1748-1716.2010.02137.x.
9
Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation.
J Appl Physiol (1985). 2007 Nov;103(5):1757-63. doi: 10.1152/japplphysiol.00487.2007. Epub 2007 Aug 30.
10
(-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.
Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H206-14. doi: 10.1152/ajpheart.00714.2012. Epub 2012 Nov 9.

引用本文的文献

1
Physiological Mechanisms Driving Microcirculatory Enhancement: the Impact of Physical Activity.
Rev Cardiovasc Med. 2025 Feb 19;26(2):25302. doi: 10.31083/RCM25302. eCollection 2025 Feb.
4
Effects of Acute Microcurrent Electrical Stimulation on Muscle Function and Subsequent Recovery Strategy.
Int J Environ Res Public Health. 2021 Apr 26;18(9):4597. doi: 10.3390/ijerph18094597.
5
Transcapillary PO gradients in contracting muscles across the fibre type and oxidative continuum.
J Physiol. 2020 Aug;598(15):3187-3202. doi: 10.1113/JP279608. Epub 2020 Jun 12.
6
Guidelines for animal exercise and training protocols for cardiovascular studies.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1100-H1138. doi: 10.1152/ajpheart.00697.2019. Epub 2020 Mar 20.
7
The role of vascular function on exercise capacity in health and disease.
J Physiol. 2021 Feb;599(3):889-910. doi: 10.1113/JP278931. Epub 2020 Mar 3.
9
Netrin-1 plays a role in the effect of moderate exercise on myocardial fibrosis in rats.
PLoS One. 2019 Feb 21;14(2):e0199802. doi: 10.1371/journal.pone.0199802. eCollection 2019.

本文引用的文献

1
The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction.
Microvasc Res. 2013 Jan;85:104-11. doi: 10.1016/j.mvr.2012.11.006. Epub 2012 Nov 19.
2
Vasodilator interactions in skeletal muscle blood flow regulation.
J Physiol. 2012 Dec 15;590(24):6297-305. doi: 10.1113/jphysiol.2012.240762. Epub 2012 Sep 17.
5
Exercise training and muscle microvascular oxygenation: functional role of nitric oxide.
J Appl Physiol (1985). 2012 Aug 15;113(4):557-65. doi: 10.1152/japplphysiol.00151.2012. Epub 2012 Jun 7.
6
Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1050-63. doi: 10.1152/ajpheart.00943.2011. Epub 2011 Nov 18.
7
Aerobic exercise training in heart failure: impact on sympathetic hyperactivity and cardiac and skeletal muscle function.
Braz J Med Biol Res. 2011 Sep;44(9):827-35. doi: 10.1590/s0100-879x2011007500075. Epub 2011 Jun 1.
9
The role of exercise training in heart failure.
J Am Coll Cardiol. 2011 Aug 2;58(6):561-9. doi: 10.1016/j.jacc.2011.04.020.
10
Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I.
Eur J Cardiovasc Prev Rehabil. 2010 Dec;17(6):637-42. doi: 10.1097/HJR.0b013e3283361dc5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验