Cervenka Petr, Hrdlička Jiří, Přibyl Michal, Snita Dalimil
Department of Chemical Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041505. doi: 10.1103/PhysRevE.85.041505. Epub 2012 Apr 25.
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
我们提出了一种电化学相互作用的动力学机制。我们假设电子供体D⁻和受体A⁺在电极表面快速形成和重组。这些介质通过热涨落在电极物质中持续形成。与电极金属化学等效的介质D⁻和A⁺在电极表面进行电化学相互作用。研究了所选电化学系统的电化学动力学和电流-电压特性。我们的结果与经典的巴特勒-伏尔默动力学给出的结果在定性上吻合良好。所提出的模型可用于研究微系统和纳米系统中常常处于非热平衡状态的快速电化学过程。此外,该动力学机制仅涉及化学反应物的表面浓度和局部电势,这便于研究具有不确定本体的电化学系统。