Mohamadou Alidou, Wamba Etienne, Lissouck Daniel, Kofane Timoleon C
Department of Physics, Faculty of Science, University of Douala, Douala, Cameroon.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):046605. doi: 10.1103/PhysRevE.85.046605. Epub 2012 Apr 18.
The matter-wave solutions of Bose-Einstein condensates with three-body interaction are examined through the one-dimensional Gross-Pitaevskii equation. By using a modified lens-type transformation and a further extension of the tanh-function method we obtain the exact analytical solutions which describe the propagation of kink-shaped solitons, anti-kink-shaped solitons, and other families of solitary waves. We realize that the shape of a kink solitary wave depends on both the scattering length and the parameter of atomic exchange with the substrate. The stability of the solitary waves is examined using analytical and numerical methods. Our results can also be applied to nonlinear optics in the presence of cubic-quintic media.
通过一维格罗斯-皮塔耶夫斯基方程研究了具有三体相互作用的玻色-爱因斯坦凝聚体的物质波解。利用一种改进的透镜型变换和双曲正切函数方法的进一步扩展,我们得到了精确的解析解,这些解描述了扭结型孤子、反扭结型孤子以及其他孤波族的传播。我们认识到扭结孤波的形状取决于散射长度和与衬底的原子交换参数。使用解析和数值方法研究了孤波的稳定性。我们的结果也可以应用于存在立方-五次介质的非线性光学中。