Suppr超能文献

基于成分-活性关系鉴定姜黄素类化合物中来自姜黄(Curcuma longa L.)的抗肿瘤成分。

Identification of antitumor constituents in curcuminoids from Curcuma longa L. based on the composition-activity relationship.

机构信息

Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

出版信息

J Pharm Biomed Anal. 2012 Nov;70:664-70. doi: 10.1016/j.jpba.2012.05.011. Epub 2012 May 15.

Abstract

Using orthogonal partial least squares (OPLS), based on the Simca-p11.5 software, and canonical correlation analysis (CCA), performed on MatLab r2010 software, the correlation between curcuminoids extracted from Curcuma longa L. and the antitumor activity on HeLa cells was investigated to identify the significantly active constituents. Fingerprints from 31 batches of curcuminoids from C. longa L. were established using high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS), and a total of 26 selected characteristic peaks were quantitatively analyzed. Afterward, the antitumor activities of the curcuminoids on HeLa cells were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. We found that 13 of the curcuminoids (peaks 9, 18, 14, 8, 16, 17, 24, 12, 4, 13, 10, 20 and 11) were significantly correlated with antitumor activity via a Loadings plot and VIP (variable importance in projection) in OPLS and a correlation coefficient in CCA. These results support a method for the discovery of antitumor active constituents.

摘要

采用正交偏最小二乘法(OPLS),基于 Simca-p11.5 软件,以及在 MatLab r2010 软件上进行的典型相关分析(CCA),研究了从姜黄中提取的姜黄素类化合物与 HeLa 细胞抗肿瘤活性之间的相关性,以鉴定出具有显著活性的成分。采用高效液相色谱-电喷雾串联质谱法(HPLC-ESI-MS/MS)建立了 31 批姜黄姜黄素类化合物的指纹图谱,共定量分析了 26 个选定的特征峰。然后,采用 MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐)法测定了姜黄素类化合物对 HeLa 细胞的抗肿瘤活性。我们发现,通过 OPLS 的 Loadings 图和 VIP(投影变量重要性)以及 CCA 的相关系数,有 13 种姜黄素类化合物(峰 9、18、14、8、16、17、24、12、4、13、10、20 和 11)与抗肿瘤活性显著相关。这些结果支持了一种发现抗肿瘤活性成分的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验