Suppr超能文献

人 Argonaute-2 与 miR-20a 复合物的结构。

The structure of human argonaute-2 in complex with miR-20a.

机构信息

W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

出版信息

Cell. 2012 Jul 6;150(1):100-10. doi: 10.1016/j.cell.2012.05.017. Epub 2012 Jun 7.

Abstract

Argonaute proteins lie at the heart of the RNA-induced silencing complex (RISC), wherein they use small RNA guides to recognize targets. Initial insight into the architecture of Argonautes came from studies of prokaryotic proteins, revealing a crescent-shaped base made up of the amino-terminal, PAZ, middle, and PIWI domains. The recently reported crystal structure of human Argonaute-2 (hAgo2), the "slicer" in RNA interference, in complex with a mixed population of RNAs derived from insect cells provides insight into the architecture of a eukaryotic Argonaute protein with defined biochemical and biological functions. Here, we report the structure of human Ago2 bound to a physiologically relevant microRNA, microRNA-20a, at 2.2 Å resolution. The miRNA is anchored at both ends by the Mid and PAZ domains and makes several kinks and turns along the binding groove. Interestingly, miRNA binding confers remarkable stability on hAgo2, locking this otherwise flexible enzyme into a stable conformation.

摘要

Argonaute 蛋白位于 RNA 诱导沉默复合物 (RISC) 的核心,在复合物中它们利用小 RNA 指导物来识别靶标。最初对 Argonaute 结构的了解来自于对原核蛋白的研究,揭示了由氨基末端、PAZ、中间和 PIWI 结构域组成的新月形碱基。最近报道的人类 Argonaute-2 (hAgo2) 与昆虫细胞来源的混合 RNA 复合物的晶体结构,为具有明确生化和生物学功能的真核 Argonaute 蛋白的结构提供了见解。在这里,我们报道了以 2.2 Å 的分辨率与生理相关的 microRNA(microRNA-20a)结合的人 Ago2 的结构。miRNA 由 Mid 和 PAZ 结构域固定在两端,并在结合槽中形成几个弯曲和转折。有趣的是,miRNA 的结合赋予了 hAgo2 显著的稳定性,将这种原本灵活的酶锁定在稳定的构象中。

相似文献

1
The structure of human argonaute-2 in complex with miR-20a.
Cell. 2012 Jul 6;150(1):100-10. doi: 10.1016/j.cell.2012.05.017. Epub 2012 Jun 7.
2
Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA.
Cell. 2016 Oct 6;167(2):484-497.e9. doi: 10.1016/j.cell.2016.09.002. Epub 2016 Sep 29.
3
The making of a slicer: activation of human Argonaute-1.
Cell Rep. 2013 Jun 27;3(6):1901-9. doi: 10.1016/j.celrep.2013.05.033. Epub 2013 Jun 6.
4
Understanding the molecular interaction of human argonaute-2 and miR-20a complex: A molecular dynamics approach.
J Cell Biochem. 2019 Dec;120(12):19915-19924. doi: 10.1002/jcb.29300. Epub 2019 Jul 18.
5
Slicer function of Drosophila Argonautes and its involvement in RISC formation.
Genes Dev. 2005 Dec 1;19(23):2837-48. doi: 10.1101/gad.1370605. Epub 2005 Nov 14.
6
Eukaryotic Argonautes come into focus.
Trends Biochem Sci. 2013 May;38(5):263-71. doi: 10.1016/j.tibs.2013.02.008. Epub 2013 Mar 29.
7
Exploring the RNA-bound and RNA-free human Argonaute-2 by molecular dynamics simulation method.
Chem Biol Drug Des. 2017 Nov;90(5):753-763. doi: 10.1111/cbdd.12997. Epub 2017 May 12.
8
Slicing-independent RISC activation requires the argonaute PAZ domain.
Curr Biol. 2012 Aug 21;22(16):1536-42. doi: 10.1016/j.cub.2012.06.040. Epub 2012 Jul 12.
9
Crystal structure of Argonaute and its implications for RISC slicer activity.
Science. 2004 Sep 3;305(5689):1434-7. doi: 10.1126/science.1102514. Epub 2004 Jul 29.
10
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.

引用本文的文献

2
Designing siRNAs against non-structural genes of all serotypes of Dengue virus using RNAi technology - A computational investigation.
J Genet Eng Biotechnol. 2025 Sep;23(3):100523. doi: 10.1016/j.jgeb.2025.100523. Epub 2025 Jun 23.
3
Dynamic shifts in isomiR profiles during parasite maturation of .
RNA Biol. 2025 Dec;22(1):1-22. doi: 10.1080/15476286.2025.2538271. Epub 2025 Jul 31.
5
C-terminal tagging impairs AGO2 function.
RNA Biol. 2025 Dec;22(1):1-24. doi: 10.1080/15476286.2025.2534028. Epub 2025 Jul 23.
6
Modeling RNA duplex dynamics with Gibbs sampling enhances base-pair prediction accuracy and reveals structural activity profiles.
NAR Genom Bioinform. 2025 Jul 17;7(3):lqaf099. doi: 10.1093/nargab/lqaf099. eCollection 2025 Sep.
7
Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology.
Pathogens. 2025 Jun 2;14(6):554. doi: 10.3390/pathogens14060554.
8
In vitro programmable DNA cleavage by a eukaryotic Argonaute.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf561.
9
Mechanistic insights into RNA cleavage by human Argonaute2-siRNA complex.
Cell Res. 2025 Apr 16. doi: 10.1038/s41422-025-01114-7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
3
The N domain of Argonaute drives duplex unwinding during RISC assembly.
Nat Struct Mol Biol. 2012 Jan 10;19(2):145-51. doi: 10.1038/nsmb.2232.
4
The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS.
Nat Struct Mol Biol. 2011 Nov 13;18(12):1351-7. doi: 10.1038/nsmb.2151.
5
Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10466-71. doi: 10.1073/pnas.1103946108. Epub 2011 Jun 6.
6
miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence.
J Cell Mol Med. 2010 Nov;14(11):2633-40. doi: 10.1111/j.1582-4934.2010.01173.x.
7
Ancestral roles of small RNAs: an Ago-centric perspective.
Cold Spring Harb Perspect Biol. 2011 Oct 1;3(10):a003772. doi: 10.1101/cshperspect.a003772.
8
Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein.
EMBO Rep. 2010 Jul;11(7):522-7. doi: 10.1038/embor.2010.81. Epub 2010 Jun 11.
9
Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2.
Nature. 2010 Jun 10;465(7299):818-22. doi: 10.1038/nature09039. Epub 2010 May 26.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验