Li Zhenzhen, Xu Qikui, Zhang Yan, Zhong Jing, Zhang Tianxiang, Xue Junchao, Liu Shuxian, Gao Haishan, Zhang Z Z Zhao, Wu Jianping, Shen En-Zhi
Fudan University, Shanghai, China.
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Cell Res. 2025 Apr 16. doi: 10.1038/s41422-025-01114-7.
In animals, AGO-clade Argonaute proteins utilize small interfering RNAs (siRNAs) as guides to recognize target with complete complementarity, resulting in target RNA cleavage that is a critical step for target silencing. These proteins feature a constricted nucleic acid-binding channel that limits base pairing between the guide and target beyond the seed region. How the AGO-siRNA complexes overcome this structural limitation and achieve efficient target cleavage remains unclear. We performed cryo-electron microscopy of human AGO-siRNA complexes bound to target RNAs of increasing lengths to examine the conformational changes associated with target recognition and cleavage. Initially, conformational transition propagates from the opening of the PAZ domain and extends through a repositioning of the PIWI-L1-N domain toward the binding channel, facilitating the capture of siRNA-target duplex. Subsequent extension of base pairing drives the downward movement of the PIWI-L1-N domain to enable catalytic activation. Finally, further base pairing toward the 3' end of siRNA destabilizes the PAZ-N domain, resulting in a "uni-lobed" architecture, which might facilitate the multi-turnover action of the AGO-siRNA enzyme complex. In contrast to PIWI-clade Argonautes, the "uni-lobed" structure of the AGO complex makes multiple contacts with the target in the central region of the siRNA-target duplex, positioning it within the catalytic site. Our findings shed light on the stepwise mechanisms by which the AGO-siRNA complex executes target RNA cleavage and offer insights into the distinct operational modalities of AGO and PIWI proteins in achieving such cleavage.
在动物中,AGO家族的AGO蛋白利用小干扰RNA(siRNA)作为向导来识别完全互补的靶标,导致靶标RNA切割,这是靶标沉默的关键步骤。这些蛋白质具有一个狭窄的核酸结合通道,该通道限制了向导与种子区域以外的靶标之间的碱基配对。AGO-siRNA复合物如何克服这种结构限制并实现有效的靶标切割仍不清楚。我们对与长度不断增加的靶标RNA结合的人AGO-siRNA复合物进行了冷冻电子显微镜观察,以检查与靶标识别和切割相关的构象变化。最初,构象转变从PAZ结构域的开口处开始传播,并通过PIWI-L1-N结构域向结合通道的重新定位而延伸,从而促进siRNA-靶标双链体的捕获。随后碱基配对的延伸驱动PIWI-L1-N结构域向下移动以实现催化激活。最后,向siRNA 3'端的进一步碱基配对使PAZ-N结构域不稳定,导致形成“单叶”结构,这可能有助于AGO-siRNA酶复合物的多轮作用。与PIWI家族的AGO蛋白不同,AGO复合物的“单叶”结构在siRNA-靶标双链体的中心区域与靶标进行多次接触,将其定位在催化位点内。我们的研究结果揭示了AGO-siRNA复合物执行靶标RNA切割的逐步机制,并为AGO和PIWI蛋白在实现这种切割中的不同作用方式提供了见解。