Bowler Michael G, Kelly Colleen K
Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK.
Theor Popul Biol. 2012 Sep;82(2):85-91. doi: 10.1016/j.tpb.2012.05.006. Epub 2012 Jun 7.
A central issue in ecology is that of the factors determining the relative abundance of species within a natural community. The proper application of the principles of statistical physics to species abundance distributions (SADs) shows that simple ecological properties could account for the near universal features observed. These properties are (i) a limit on the number of individuals in an ecological guild and (ii) per capita birth and death rates. They underpin the neutral theory of Hubbell (2001), the master equation approach of Volkov et al. (2003, 2005) and the idiosyncratic (extreme niche) theory of Pueyo et al. (2007); they result in an underlying log series SAD, regardless of neutral or niche dynamics. The success of statistical mechanics in this application implies that communities are in dynamic equilibrium and hence that niches must be flexible and that temporal fluctuations on all sorts of scales are likely to be important in community structure.
生态学中的一个核心问题是,决定自然群落中物种相对丰度的因素是什么。将统计物理学原理正确应用于物种丰度分布(SADs)表明,简单的生态属性可以解释所观察到的近乎普遍的特征。这些属性是:(i)生态群落中个体数量的限制,以及(ii)人均出生率和死亡率。它们是哈贝尔(2001年)中性理论、沃尔科夫等人(2003年、2005年)主方程方法以及普约等人(2007年)特质(极端生态位)理论的基础;无论中性或生态位动态如何,它们都会导致潜在的对数级数物种丰度分布。统计力学在这一应用中的成功意味着群落处于动态平衡,因此生态位必须是灵活的,而且各种尺度上的时间波动在群落结构中可能很重要。