Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Small. 2012 Aug 20;8(16):2555-62. doi: 10.1002/smll.201200470. Epub 2012 Jun 11.
The use of hydrogels for biomedical engineering, and for the development of biologically inspired cellular systems at the microscale, is advancing at a rapid pace. Microelectromechanical system (MEMS) resonant mass sensors enable the mass measurement of a range of materials. The integration of hydrogels onto MEMS resonant mass sensors is demonstrated, and these sensors are used to characterize the hydrogel mass and swelling characteristics. The mass values obtained from resonant frequency measurements of poly(ethylene glycol)diacrylate (PEGDA) microstructures match well with the values independently verified through volume measurements. The sensors are also used to measure the influence of fluids of similar and greater density on the mass measurements of microstructures. The data show a size-dependent increase in gel mass when fluid density is increased. Lastly, volume comparisons of bulk hydrogels with a range polymer concentration (5% to 100% (v/v)) show a non-linear swelling trend.
水凝胶在生物医学工程中的应用,以及在微尺度上开发受生物启发的细胞系统,正在迅速发展。微机电系统 (MEMS) 谐振质量传感器能够测量多种材料的质量。将水凝胶集成到 MEMS 谐振质量传感器上,并利用这些传感器来表征水凝胶的质量和溶胀特性。通过对聚乙二醇二丙烯酸酯 (PEGDA) 微结构的谐振频率测量得到的质量值与通过体积测量独立验证的值吻合较好。这些传感器还用于测量相似和更大密度的流体对微结构质量测量的影响。数据显示,当流体密度增加时,凝胶质量会出现尺寸依赖性增加。最后,对具有一系列聚合物浓度(5%至 100%(v/v))的块状水凝胶的体积比较显示出非线性溶胀趋势。