Suppr超能文献

淡水氨氧化古菌和细菌的生理生态学特征。

Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater.

机构信息

Miami University, Department of Microbiology, Oxford, Ohio, USA.

出版信息

Appl Environ Microbiol. 2012 Aug;78(16):5773-80. doi: 10.1128/AEM.00432-12. Epub 2012 Jun 8.

Abstract

Aerobic biological ammonia oxidation is carried out by two groups of microorganisms, ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). Here we present a study using cultivation-based methods to investigate the differences in growth of three AOA cultures and one AOB culture enriched from freshwater environments. The strain in the enriched AOA culture belong to thaumarchaeal group I.1a, with the strain in one enrichment culture having the highest identity with "Candidatus Nitrosoarchaeum koreensis" and the strains in the other two representing a new genus of AOA. The AOB strain in the enrichment culture was also obtained from freshwater and had the highest identity to AOB from the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). We investigated the influence of ammonium, oxygen, pH, and light on the growth of AOA and AOB. The growth rates of the AOB increased with increasing ammonium concentrations, while the growth rates of the AOA decreased slightly. Increasing oxygen concentrations led to an increase in the growth rate of the AOB, while the growth rates of AOA were almost oxygen insensitive. Light exposure (white and blue wavelengths) inhibited the growth of AOA completely, and the AOA did not recover when transferred to the dark. AOB were also inhibited by blue light; however, growth recovered immediately after transfer to the dark. Our results show that the tested AOB have a competitive advantage over the tested AOA under most conditions investigated. Further experiments will elucidate the niches of AOA and AOB in more detail.

摘要

好的,我已经了解任务,请输入需要翻译的文本。

相似文献

2
Competition between Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments.淡水环境中氨氧化古菌与细菌的竞争。
Appl Environ Microbiol. 2021 Sep 28;87(20):e0103821. doi: 10.1128/AEM.01038-21. Epub 2021 Aug 4.

引用本文的文献

本文引用的文献

2
Differential photoinhibition of bacterial and archaeal ammonia oxidation.细菌和古菌氨氧化的差异光抑制。
FEMS Microbiol Lett. 2012 Feb;327(1):41-6. doi: 10.1111/j.1574-6968.2011.02457.x. Epub 2011 Dec 2.
5
Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.从硝化酸性土壤中培养专性嗜酸氨氧化菌。
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15892-7. doi: 10.1073/pnas.1107196108. Epub 2011 Sep 6.
6
Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil.土壤中的氨氧化古菌 Nitrososphaera viennensis。
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5. doi: 10.1073/pnas.1013488108. Epub 2011 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验