Suppr超能文献

mTORC1 信号在胎盘营养感应中的新兴作用。

The emerging role of mTORC1 signaling in placental nutrient-sensing.

机构信息

Center for Pregnancy and Newborn Research, Department of OB/GYN, University of Texas Health Science Center, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

出版信息

Placenta. 2012 Nov;33 Suppl 2(Suppl 2):e23-9. doi: 10.1016/j.placenta.2012.05.010. Epub 2012 Jun 10.

Abstract

Nutrient-sensing signaling pathways regulate cell metabolism and growth in response to altered nutrient levels and growth factor signaling. Because trophoblast cell metabolism and associated signaling influence fetal nutrient availability, trophoblast nutrient sensors may have a unique role in regulating fetal growth. We review data in support of a role for mammalian target of rapamycin complex 1 (mTORC1) in placental nutrient-sensing. Placental insulin/IGF-I signaling and fetal levels of oxygen, glucose and amino acids (AAs) are altered in pregnancy complications such as intrauterine growth restriction, and all these factors are well-established upstream regulators of mTORC1. Furthermore, mTORC1 is a positive regulator of placental AA transporters, suggesting that trophoblast mTORC1 modulates AA transfer across the placenta. In addition, placental mTORC1 signaling is also known to be modulated in pregnancy complications associated with altered fetal growth and in animal models in which maternal nutrient availability has been altered experimentally. Recently, significant progress has been made in identifying the molecular mechanisms by which mTORC1 senses AAs, a process requiring shuttling of mTOR to late endosomal and lysosomal compartments (LELs). We recently identified members of the proton-assisted amino acid transporter (PAT/SLC36) family as critical components of the AA-sensing system or 'nutrisome' that regulates mTORC1 on LEL membranes, placing AA transporters and their subcellular regulation both upstream and downstream of mTORC1-driven processes. We propose a model in which placental mTORC1 signaling constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus.

摘要

营养感应信号通路可调节细胞代谢和生长,以响应改变的营养水平和生长因子信号。由于滋养细胞代谢和相关信号会影响胎儿的营养供应,滋养细胞的营养感应器可能在调节胎儿生长方面具有独特的作用。我们回顾了支持哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)在胎盘营养感应中的作用的数据。胎盘胰岛素/IGF-I 信号和胎儿的氧、葡萄糖和氨基酸(AA)水平在宫内生长受限等妊娠并发症中发生改变,所有这些因素都是 mTORC1 的公认上游调节剂。此外,mTORC1 是胎盘 AA 转运体的正调节剂,表明滋养细胞 mTORC1 调节 AA 穿过胎盘的转移。此外,与改变的胎儿生长相关的妊娠并发症以及通过实验改变母体营养供应的动物模型中,胎盘 mTORC1 信号也已知会发生调节。最近,在鉴定 mTORC1 感应 AA 的分子机制方面取得了重大进展,这一过程需要 mTOR 向晚期内体和溶酶体区室(LEL)转移。我们最近确定了质子辅助氨基酸转运体(PAT/SLC36)家族的成员作为调节 LEL 膜上 mTORC1 的 AA 感应系统或“nutrisome”的关键组成部分,将 AA 转运体及其亚细胞调节置于 mTORC1 驱动的过程的上游和下游。我们提出了一个模型,即胎盘 mTORC1 信号构成了母体营养供应与胎儿生长之间的关键联系,从而影响胎儿的长期健康。

相似文献

1
The emerging role of mTORC1 signaling in placental nutrient-sensing.
Placenta. 2012 Nov;33 Suppl 2(Suppl 2):e23-9. doi: 10.1016/j.placenta.2012.05.010. Epub 2012 Jun 10.
2
Placental regulation of fetal nutrient supply.
Curr Opin Clin Nutr Metab Care. 2013 May;16(3):292-7. doi: 10.1097/MCO.0b013e32835e3674.
3
mTOR folate sensing links folate availability to trophoblast cell function.
J Physiol. 2017 Jul 1;595(13):4189-4206. doi: 10.1113/JP272424. Epub 2017 Jun 1.
6
Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function.
J Nutr. 2017 Jul;147(7):1237-1242. doi: 10.3945/jn.117.248823. Epub 2017 Jun 7.
7
Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†.
Biol Reprod. 2019 Apr 1;100(4):872-884. doi: 10.1093/biolre/ioy249.

引用本文的文献

3
Impact of near continuous low dose rate neutron irradiation on pregnancy outcomes in mice.
NPJ Microgravity. 2024 Dec 19;10(1):113. doi: 10.1038/s41526-024-00438-9.
4
The early life exposome and autism risk: a role for the maternal microbiome?
Gut Microbes. 2024 Jan-Dec;16(1):2385117. doi: 10.1080/19490976.2024.2385117. Epub 2024 Aug 9.
5
TFEB controls syncytiotrophoblast formation and hormone production in placenta.
Cell Death Differ. 2024 Nov;31(11):1439-1451. doi: 10.1038/s41418-024-01337-y. Epub 2024 Jul 4.
6
Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies identifies placental dysfunction signatures.
Clin Transl Immunology. 2024 Feb 6;13(2):e1488. doi: 10.1002/cti2.1488. eCollection 2024.
7
Research progress in the role and mechanism of Leucine in regulating animal growth and development.
Front Physiol. 2023 Nov 17;14:1252089. doi: 10.3389/fphys.2023.1252089. eCollection 2023.
9
The Role of Adiponectin during Pregnancy and Gestational Diabetes.
Life (Basel). 2023 Jan 21;13(2):301. doi: 10.3390/life13020301.
10
Developmental effects of metformin exposure.
Trends Dev Biol. 2021;14:1-17.

本文引用的文献

3
A unifying model for mTORC1-mediated regulation of mRNA translation.
Nature. 2012 May 2;485(7396):109-13. doi: 10.1038/nature11083.
4
Leucyl-tRNA synthetase: double duty in amino acid sensing.
Cell Res. 2012 Aug;22(8):1207-9. doi: 10.1038/cr.2012.68. Epub 2012 Apr 24.
5
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.
Cell. 2012 Apr 13;149(2):410-24. doi: 10.1016/j.cell.2012.02.044. Epub 2012 Mar 15.
8
GSK-3: Functional Insights from Cell Biology and Animal Models.
Front Mol Neurosci. 2011 Nov 16;4:40. doi: 10.3389/fnmol.2011.00040. eCollection 2011.
10
AMPK and mTOR in cellular energy homeostasis and drug targets.
Annu Rev Pharmacol Toxicol. 2012;52:381-400. doi: 10.1146/annurev-pharmtox-010611-134537. Epub 2011 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验