CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa.
Appl Microbiol Biotechnol. 2012 Oct;96(2):385-94. doi: 10.1007/s00253-012-4191-0. Epub 2012 Jun 13.
This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus-like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted through the secretory pathway in A. niger, resulted in completely assembled and properly folded HBsAg. This was achieved by implementing a gene fusion strategy using the highly expressed catalytic domain of the native glucoamylase gene (GlaA ( G2 )) fused to the HBsAg S gene. The inducible glucoamylase promoter (GlaA ( p )) was used to control transcription in the A. niger D15 host. The gene fusion strategy was designed for cleavage of the fused product by the KEX2-like protease, resulting in intracellular accumulation of HBsAg and extracellular secretion of glucoamylase. Immunodetection using a monoclonal HBsAg antibody could not detect the fused GlaA ( G2 ) ::S product in intracellular and extracellular fractions, indicating that full assembly and maturation of HBsAg occurred after cleavage of the fused product in the Golgi complex. Several breakdown products showing an immunoreactive response to the glucoamylase polyclonal antibody indicated a level of intracellular degradation. The choice of carbon source used in cultivation significantly affected HBsAg production levels through induction of the glucoamylase promoter. The highest specific HBsAg production was observed during growth on inducing substrates of starch and its degradation products (maltodextrin and maltose), although residual glucose accumulation in the mid-exponential phase reduced HBsAg production. HBsAg production in starch-based cultures may be improved further by optimization of the rates of starch hydrolysis by glucoamylase and subsequent glucose consumption by the host.
本研究展示了黑曲霉作为病毒样颗粒生产的候选表达系统的潜力,采用基因融合技术。乙肝表面抗原(HBsAg)通过黑曲霉的分泌途径进行靶向表达,导致完全组装和正确折叠的 HBsAg。这是通过使用高度表达的天然葡糖淀粉酶基因(GlaA(G2)的催化结构域与 HBsAg S 基因融合的基因融合策略来实现的。诱导型葡糖淀粉酶启动子(GlaA(p))用于控制 A. niger D15 宿主中的转录。该基因融合策略设计用于通过类 KEX2 蛋白酶切割融合产物,导致 HBsAg 在细胞内积累和葡糖淀粉酶在细胞外分泌。使用单克隆 HBsAg 抗体进行免疫检测无法在细胞内和细胞外部分检测到融合的 GlaA(G2)::S 产物,表明 HBsAg 的完全组装和成熟发生在高尔基体复合物中融合产物的切割之后。几种表现出对葡糖淀粉酶多克隆抗体免疫反应的降解产物表明存在一定程度的细胞内降解。培养中使用的碳源选择通过诱导葡糖淀粉酶启动子显著影响 HBsAg 的生产水平。在诱导淀粉及其降解产物(麦芽糊精和麦芽糖)的底物上生长时,观察到最高的特定 HBsAg 生产,但在指数中期残留葡萄糖积累会降低 HBsAg 的生产。通过优化葡糖淀粉酶水解淀粉的速率和随后宿主对葡萄糖的消耗,可以进一步提高基于淀粉的培养物中的 HBsAg 生产。