Suppr超能文献

炎症小体天冬氨酸半胱氨酸蛋白酶在创伤弧菌感染中处理斑马鱼白细胞介素-1β过程中的作用。

Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection.

机构信息

Interdisciplinary Program in Pathobiology, University of Washington, Seattle, Washington, USA.

出版信息

Infect Immun. 2012 Aug;80(8):2878-85. doi: 10.1128/IAI.00543-12. Epub 2012 Jun 11.

Abstract

The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.

摘要

白细胞介素-1 家族细胞因子对于控制病原微生物至关重要,但也会导致破坏性的自身免疫性疾病。因此,严格控制炎症过程对于维持体内平衡至关重要。在哺乳动物中,白细胞介素-1β(IL-1β)主要通过转录和加工两个水平进行调节。IL-1β 加工的主要途径是炎性小体,这是一种在细胞质中形成的多蛋白复合物,导致炎症半胱天冬酶(caspase 1)的激活,随后切割并分泌活性 IL-1β。尽管斑马鱼编码了白细胞介素-1β和炎性半胱天冬酶的同源物,但激活的半胱天冬酶(s)对白细胞介素-1β的加工从未被检查过。在这里,我们证明,在感染鱼类特异性细菌病原体弗朗西斯氏菌后,成年斑马鱼的原代白细胞显示出类似半胱天冬酶-1 的活性,导致白细胞介素-1β的加工。添加半胱天冬酶 1 或多半胱天冬酶抑制剂可显著抑制白细胞介素-1β的加工。与哺乳动物一样,这一加工事件伴随着切割的白细胞介素-1β分泌到培养基中。此外,两种假定的斑马鱼炎性半胱天冬酶同源物,半胱天冬酶 A 和半胱天冬酶 B,都能够切割白细胞介素-1β,但具有不同的特异性。这些结果代表了在病原体刺激下斑马鱼白细胞介素-1β的加工和分泌的首次证明,有助于我们理解控制炎症调节的进化过程。

相似文献

1
Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection.
Infect Immun. 2012 Aug;80(8):2878-85. doi: 10.1128/IAI.00543-12. Epub 2012 Jun 11.
2
The zebrafish NLRP3 inflammasome has functional roles in ASC-dependent interleukin-1β maturation and gasdermin E-mediated pyroptosis.
J Biol Chem. 2020 Jan 24;295(4):1120-1141. doi: 10.1074/jbc.RA119.011751. Epub 2019 Dec 18.
4
Francisella noatunensis subspecies noatunensis clpB deletion mutant impairs development of francisellosis in a zebrafish model.
Vaccine. 2017 Dec 19;35(52):7264-7272. doi: 10.1016/j.vaccine.2017.11.009. Epub 2017 Nov 16.
5
Establishment of three Francisella infections in zebrafish embryos at different temperatures.
Infect Immun. 2014 Jun;82(6):2180-94. doi: 10.1128/IAI.00077-14. Epub 2014 Mar 10.
7
Bacterial recognition pathways that lead to inflammasome activation.
Immunol Rev. 2015 May;265(1):112-29. doi: 10.1111/imr.12289.

引用本文的文献

1
Cytokines IL-1β and IL-10 are required for Müller glia proliferation following light damage in the adult zebrafish retina.
Front Cell Dev Biol. 2024 Jun 13;12:1406330. doi: 10.3389/fcell.2024.1406330. eCollection 2024.
2
Inflammation in Development and Aging: Insights from the Zebrafish Model.
Int J Mol Sci. 2024 Feb 10;25(4):2145. doi: 10.3390/ijms25042145.
5
Teleost NOD-like receptors and their downstream signaling pathways: A brief review.
Fish Shellfish Immunol Rep. 2022 May 4;3:100056. doi: 10.1016/j.fsirep.2022.100056. eCollection 2022 Dec.
6
Revisiting the origin of interleukin 1 in anamniotes and sub-functionalization of interleukin 1 in amniotes.
Open Biol. 2022 Aug;12(8):220049. doi: 10.1098/rsob.220049. Epub 2022 Aug 17.
8
Genetically inducible and reversible zebrafish model of systemic inflammation.
Biol Open. 2022 Mar 15;11(3). doi: 10.1242/bio.058559. Epub 2022 Mar 9.
10
Disruption of the Francisella noatunensis subsp. Gene Results in Virulence Attenuation and Protection in Zebrafish.
Infect Immun. 2021 Oct 15;89(11):e0022021. doi: 10.1128/IAI.00220-21. Epub 2021 Aug 23.

本文引用的文献

1
Molecular mechanisms of inflammasome activation during microbial infections.
Immunol Rev. 2011 Sep;243(1):174-90. doi: 10.1111/j.1600-065X.2011.01041.x.
2
A clinical perspective of IL-1β as the gatekeeper of inflammation.
Eur J Immunol. 2011 May;41(5):1203-17. doi: 10.1002/eji.201141550.
3
Characterization of the mononuclear phagocyte system in zebrafish.
Blood. 2011 Jun 30;117(26):7126-35. doi: 10.1182/blood-2010-11-321448. Epub 2011 Mar 15.
5
Host-pathogen interactions made transparent with the zebrafish model.
Curr Drug Targets. 2011 Jun;12(7):1000-17. doi: 10.2174/138945011795677809.
6
Inflammasome activation and IL-1β and IL-18 processing during infection.
Trends Immunol. 2011 Mar;32(3):110-6. doi: 10.1016/j.it.2011.01.003. Epub 2011 Feb 18.
7
Sensing disease and danger: a survey of vertebrate PRRs and their origins.
Dev Comp Immunol. 2011 Sep;35(9):886-97. doi: 10.1016/j.dci.2011.01.008. Epub 2011 Jan 15.
8
Trolling for the ideal model host: zebrafish take the bait.
Future Microbiol. 2010 Apr;5(4):563-9. doi: 10.2217/fmb.10.24.
9
IL-1beta processing in host defense: beyond the inflammasomes.
PLoS Pathog. 2010 Feb 26;6(2):e1000661. doi: 10.1371/journal.ppat.1000661.
10
Interaction of Francisella asiatica with tilapia (Oreochromis niloticus) innate immunity.
Infect Immun. 2010 May;78(5):2070-8. doi: 10.1128/IAI.01308-09. Epub 2010 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验