Laboratoire Interdisciplinaire Carnot de Bourgogne, Unité Mixte de Recherche 6303 Centre National de la Recherche Scientifique-Université de Bourgogne, 9 Avenue A Savary, BP 47 870, F-21078 Dijon Cedex, France.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10346-51. doi: 10.1073/pnas.1207083109. Epub 2012 Jun 11.
Structural fluctuations of a protein are essential for a protein to function and fold. By using molecular dynamics (MD) simulations of the model α/β protein VA3 in its native state, the coupling between the main-chain (MC) motions [represented by coarse-grained dihedral angles (CGDAs) γ(n) based on four successive C(α) atoms (n - 1, n, n + 1, n + 2) along the amino acid sequence] and its side-chain (SC) motions [represented by CGDAs δ(n) formed by the virtual bond joining two consecutive C(α) atoms (n, n + 1) and the bonds joining these C(α) atoms to their respective C(β) atoms] was analyzed. The motions of SCs (δ(n)) and MC (γ(n)) over time occur on similar free-energy profiles and were found to be subdiffusive. The fluctuations of the SCs (δ(n)) and those of the MC (γ(n)) are generally poorly correlated on a ps time-scale with a correlation increasing with time to reach a maximum value at about 10 ns. This maximum value is close to the correlation between the δ(n)(t) and γ(n)(t) time-series extracted from the entire duration of the MD runs (400 ns) and varies significantly along the amino acid sequence. High correlations between the SC and MC motions [δ(t) and γ(t) time-series] were found only in flexible regions of the protein for a few residues which contribute the most to the slowest collective modes of the molecule. These results are a possible indication of the role of the flexible regions of proteins for the biological function and folding.
蛋白质的结构波动对于蛋白质的功能和折叠至关重要。通过对模型α/β 蛋白 VA3 在其天然状态下进行分子动力学(MD)模拟,分析了主链(MC)运动[由沿氨基酸序列的四个连续 Cα 原子(n-1、n、n+1、n+2)表示的粗粒度二面角(CGDA)γ(n)表示]与其侧链(SC)运动[由虚拟键连接两个连续的 Cα 原子(n、n+1)形成的 CGDA δ(n)和连接这些 Cα 原子与其各自的 Cβ 原子的键]之间的耦合。SC(δ(n))和 MC(γ(n))随时间的运动发生在相似的自由能谱上,并且被发现是亚扩散的。SC(δ(n))和 MC(γ(n))的波动在 ps 时间尺度上通常相关性较差,随着时间的推移相关性增加,在约 10 ns 时达到最大值。该最大值接近从 MD 运行的整个持续时间(400 ns)中提取的 δ(n)(t)和 γ(n)(t)时间序列之间的相关性,并且沿氨基酸序列显著变化。仅在蛋白质的柔性区域中发现 SC 和 MC 运动[δ(t)和 γ(t)时间序列]之间存在高度相关性,这对于分子最慢的集体模式贡献最大的少数残基。这些结果可能表明蛋白质的柔性区域在生物学功能和折叠中的作用。