Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0687, USA.
J Biol Chem. 2012 Aug 17;287(34):28898-916. doi: 10.1074/jbc.M112.363499. Epub 2012 Jun 12.
The outermost positions of mammalian cell-surface glycans are predominantly occupied by the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). To date, hydroxylation of CMP-Neu5Ac resulting in the conversion into CMP-Neu5Gc is the only known enzymatic reaction in mammals to synthesize a monosaccharide carrying an N-glycolyl group. In our accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549), we report a metabolic pathway for degradation of Neu5Gc, demonstrating that N-acetylhexosamine pathways are tolerant toward the N-glycolyl substituent of Neu5Gc breakdown products. In this study, we show that exogenously added N-glycolylgalactosamine (GalNGc) serves as a precursor for Neu5Gc de novo biosynthesis, potentially involving seven distinct mammalian enzymes. Following the GalNAc salvage pathway, UDP-GalNGc is epimerized to UDP-GlcNGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway. Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase-deficient cells, we confirm that conversion of GalNGc into Neu5Gc depends on this key enzyme of sialic acid biosynthesis. Furthermore, we demonstrate by mass spectrometry that the metabolic intermediates UDP-GalNGc and UDP-GlcNGc serve as substrates for assembly of most major classes of cellular glycans. We show for the first time incorporation of GalNGc and GlcNGc into chondroitin/dermatan sulfates and heparan sulfates, respectively. As demonstrated by structural analysis, N-glycolylated hexosamines were found in cellular gangliosides and incorporated into Chinese hamster ovary cell O-glycans. Remarkably, GalNAc derivatives altered the overall O-glycosylation pattern as indicated by the occurrence of novel O-glycan structures. This study demonstrates that mammalian N-acetylhexosamine pathways and glycan assembly are surprisingly tolerant toward the N-glycolyl substituent.
哺乳动物细胞表面聚糖的最外层主要被唾液酸 N-乙酰神经氨酸(Neu5Ac)和 N-羟乙酰神经氨酸(Neu5Gc)占据。迄今为止,CMP-Neu5Ac 的羟化导致其转化为 CMP-Neu5Gc 是哺乳动物中唯一已知的酶促反应,可合成携带 N-羟乙酰基的单糖。在我们的相关论文(Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549)中,我们报告了 Neu5Gc 的降解代谢途径,证明 N-乙酰己糖胺途径可耐受 Neu5Gc 分解产物的 N-羟乙酰基。在这项研究中,我们表明,外源性添加的 N-羟乙酰半乳糖胺(GalNGc)可作为 Neu5Gc 从头生物合成的前体,可能涉及七种不同的哺乳动物酶。沿 UDP-GalNAc 回收途径,UDP-GalNGc 被差向异构化为 UDP-GlcNGc,后者可能与内源性 UDP-GlcNAc 竞争唾液酸生物合成途径。使用 UDP-N-乙酰葡萄糖胺 2-差向异构酶/N-乙酰甘露糖胺激酶缺陷细胞,我们证实 GalNGc 转化为 Neu5Gc 依赖于该关键的唾液酸生物合成酶。此外,我们通过质谱法证明代谢中间产物 UDP-GalNGc 和 UDP-GlcNGc 可作为大多数主要类型细胞聚糖组装的底物。我们首次展示了 GalNGc 和 GlcNGc 分别掺入软骨素/硫酸皮肤素和肝素硫酸中。通过结构分析表明,在细胞神经节苷脂中发现了 N-羟乙酰化己糖胺,并掺入到中国仓鼠卵巢细胞 O-聚糖中。值得注意的是,GalNAc 衍生物改变了整体 O-糖基化模式,表明出现了新型 O-聚糖结构。这项研究表明,哺乳动物 N-乙酰己糖胺途径和聚糖组装对 N-羟乙酰基具有惊人的耐受性。