Suppr超能文献

代谢串扰允许通过 N-乙酰半乳糖胺补救途径标记 O-连接β-N-乙酰氨基葡萄糖修饰的蛋白质。

Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway.

机构信息

Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3141-6. doi: 10.1073/pnas.1010045108. Epub 2011 Feb 7.

Abstract

Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.

摘要

数百种哺乳动物核蛋白和胞质蛋白可通过 O-连接 β-N-乙酰葡萄糖胺(O-GlcNAc)可逆糖基化,以调节其功能、定位和稳定性。尽管 O-GlcNAc 信号具有广泛的功能意义,但由于其动态和翻译后修饰的性质,仅使用传统的分子和细胞生物学技术来研究它具有挑战性。在这里,我们报告说 N-乙酰半乳糖胺 salvage 和 O-GlcNAcylation 途径之间的代谢交叉对话可用于标记和鉴定 O-GlcNAc 化蛋白。我们发现内源性哺乳动物生物合成酶可将 N-叠氮乙酰半乳糖胺(GalNAz)转化为 UDP-GalNAz,然后将其差向异构化为 UDP-N-叠氮乙酰葡萄糖胺(GlcNAz)。O-GlcNAc 转移酶接受 UDP-GlcNAz 作为核苷酸糖供体,将叠氮糖附加到其天然底物上,然后可以使用叠氮反应性化学探针通过共价标记进行检测。在一项原理验证蛋白质组学实验中,我们使用人类细胞的代谢 GalNAz 标记和生物正交化学探针亲和纯化和鉴定了许多 O-GlcNAc 化蛋白。我们的工作为未来识别、可视化和表征动态 O-GlcNAc 信号的各种化学方法提供了蓝图。

相似文献

1
Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3141-6. doi: 10.1073/pnas.1010045108. Epub 2011 Feb 7.
6
Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation.
Methods Enzymol. 2018;598:101-135. doi: 10.1016/bs.mie.2017.06.009. Epub 2017 Aug 7.
8
A chemical approach for identifying O-GlcNAc-modified proteins in cells.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9116-21. doi: 10.1073/pnas.1632821100. Epub 2003 Jul 21.
10
Cross regulation between mTOR signaling and O-GlcNAcylation.
J Bioenerg Biomembr. 2018 Jun;50(3):213-222. doi: 10.1007/s10863-018-9747-y. Epub 2018 Mar 9.

引用本文的文献

1
Leaflet-specific phospholipid imaging using genetically encoded proximity sensors.
Nat Chem Biol. 2025 Sep 15. doi: 10.1038/s41589-025-02021-z.
2
Achieving cell-type selectivity in metabolic oligosaccharide engineering.
RSC Chem Biol. 2025 Jul 29. doi: 10.1039/d5cb00168d.
3
O-GlcNAc modulation of nuclear pore complexes orchestrates mRNA export efficiency.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2502687122. doi: 10.1073/pnas.2502687122. Epub 2025 Aug 7.
4
Dynamic regulation of Sec24C by phosphorylation and O-GlcNAcylation during cell cycle progression.
J Biol Chem. 2025 Jul 3;301(8):110456. doi: 10.1016/j.jbc.2025.110456.
5
O-GlcNAcylation of the intellectual disability protein DDX3X exerts proteostatic cell cycle control.
Open Biol. 2025 Jan;15(7):250064. doi: 10.1098/rsob.250064. Epub 2025 Jul 2.
6
Extracellular exosomal RNAs are glyco-modified.
Nat Cell Biol. 2025 Jun;27(6):983-991. doi: 10.1038/s41556-025-01682-1. Epub 2025 Jun 4.
7
An Expanded View of RNA Modification with Carbohydrate-Based Metabolic Probes.
JACS Au. 2025 May 5;5(5):2309-2320. doi: 10.1021/jacsau.5c00249. eCollection 2025 May 26.
9
Self-assembled PROTACs enable glycoproteins degradation in the living cells.
Chem Sci. 2025 Apr 2;16(18):8060-8068. doi: 10.1039/d5sc00400d. eCollection 2025 May 7.
10
Evidence for Functional Regulation of the KLHL3/WNK Pathway by O-GlcNAcylation.
bioRxiv. 2025 Feb 27:2025.02.27.640596. doi: 10.1101/2025.02.27.640596.

本文引用的文献

1
Targeted metabolic labeling of yeast N-glycans with unnatural sugars.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3988-93. doi: 10.1073/pnas.0911247107. Epub 2010 Feb 8.
2
In vivo imaging of Caenorhabditis elegans glycans.
ACS Chem Biol. 2009 Dec 18;4(12):1068-72. doi: 10.1021/cb900254y.
4
The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine.
Biochim Biophys Acta. 2010 Feb;1800(2):80-95. doi: 10.1016/j.bbagen.2009.07.017. Epub 2009 Jul 30.
5
Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13793-8. doi: 10.1073/pnas.0806216105. Epub 2008 Sep 8.
6
A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.
Mol Biol Cell. 2008 Oct;19(10):4130-40. doi: 10.1091/mbc.e07-11-1146. Epub 2008 Jul 23.
7
Genome-scale identification of UDP-GlcNAc-dependent pathways.
Proteomics. 2008 Aug;8(16):3294-302. doi: 10.1002/pmic.200800208.
8
A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo.
Nat Chem Biol. 2008 Aug;4(8):483-90. doi: 10.1038/nchembio.96. Epub 2008 Jun 29.
9
In vivo imaging of membrane-associated glycans in developing zebrafish.
Science. 2008 May 2;320(5876):664-7. doi: 10.1126/science.1155106.
10
Hepatic glucose sensing via the CREB coactivator CRTC2.
Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验