Suppr超能文献

Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G.

作者信息

Voigt J, Nagel K

机构信息

Institut für Allgemeine Botanik und Botanischer Garten, Hamburg, Federal Republic of Germany.

出版信息

Eur J Biochem. 1990 Dec 12;194(2):579-85. doi: 10.1111/j.1432-1033.1990.tb15655.x.

Abstract

Two inhibitors of ribosome-dependent GTP hydrolysis by elongation factor (EF)G were found in the ribosome wash of Escherichia coli strain B. One of these inhibitors was purified to homogeneity and characterized. The isolated inhibitor was found to consist of two polypeptide subunits with apparent molecular masses of 23 kDa and 10 kDa. Inhibition of EF-G GTPase could not be overcome by increasing amounts of the elongation factor or high concentrations of GTP, but was reversed by large amounts of ribosomes. The effect of the inhibitor was reduced by increasing concentrations of either 30S or 50S ribosomal subunits. EF-G-dependent GTPase of 50S ribosomal subunits was not affected by the inhibitor. These findings clearly show that the inhibitor interferes with the modulation of EF-G GTPase activity by the interactions between 30S and 50S ribosomal subunits. Under conditions, where 30S CsCl core particles are able to associate with 50S subunits and to stimulate EF-G GTPase, the effect of the inhibitor was considerably reduced when intact 30S ribosomal subunits were substituted by 30S CsCl core particles. This finding indicates that 30S CsCl split proteins are important for the action of the inhibitor and that the inhibitor does not affect the EF-G GTPase merely by interfering with the association of ribosomal subunits. Furthermore, poly(U)-dependent poly(phenylalanine) synthesis was considerably less sensitive to the inhibitor than EF-G GTPase. When ribosomes were preincubated with poly(U) and Phe-tRNA(Phe), poly(phenylalanine) synthesis was considerably less affected by the inhibitor, whereas EF-G GTPase was still sensitive.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验