Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA.
Biopolymers. 2012 Sep;97(9):709-31. doi: 10.1002/bip.22052.
We review tools for structure identification and model-based refinement from three-dimensional electron microscopy implemented in our in-house software package, VOLROVER 2.0. For viral density maps with icosahedral symmetry, we segment the capsid, polymeric, and monomeric subunits using techniques based on automatic symmetry detection and multidomain fast marching. For large biomolecules without symmetry information, we again use our multidomain fast-marching method with manual or fit-based multiseeding to segment meaningful substructures. In either case, we subject the resulting segmented subunit to secondary structure detection when the EM resolution is sufficiently high, and rigid-body structure fitting when the corresponding X-ray structure is available. Secondary structure elements are identified by three techniques: our earlier volume-based and boundary-based skeletonization methods as well as a new method, currently in development, based on solving the grassfire flow equation. For rigid-body fitting, we adapt our earlier fast Fourier-based correlation scheme F2Dock. Our reported segmentation, secondary structure elements identification, and rigid-body fitting techniques, implemented in VOLROVER 2.0 are applied to the PSB 2011 cryo-EM modeling challenge data, and our results are briefly compared to similar results submitted from other research groups. The comparisons show that our techniques are equally capable of segmenting relatively accurate subunits from a viral or protein assembly, and that high segmentation quality leads in turn to higher-quality results of secondary structure elements identification and correlation-based rigid-body fitting. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 709-731, 2012.
我们回顾了在我们的内部软件包 VOLROVER 2.0 中实现的用于从三维电子显微镜中识别结构和基于模型的细化的工具。对于具有二十面体对称性的病毒密度图,我们使用基于自动对称检测和多域快速行进的技术对衣壳、聚合和单体亚基进行分割。对于没有对称信息的大型生物分子,我们再次使用我们的多域快速行进方法,结合手动或基于拟合的多播种来分割有意义的亚结构。在这两种情况下,当 EM 分辨率足够高时,我们将得到的分割亚基提交给二级结构检测,当相应的 X 射线结构可用时,我们将其提交给刚体结构拟合。二级结构元素通过三种技术来识别:我们早期的基于体积和基于边界的骨架化方法,以及一种新的、目前正在开发中的方法,基于求解草火流方程。对于刚体拟合,我们采用了我们早期的基于快速傅里叶的相关方案 F2Dock。我们在 VOLROVER 2.0 中实现的报告的分割、二级结构元素识别和刚体拟合技术应用于 PSB 2011 冷冻电镜建模挑战数据,并且我们的结果与其他研究小组提交的类似结果进行了简要比较。比较表明,我们的技术同样能够从病毒或蛋白质组装中分割出相对准确的亚基,并且高分割质量反过来又导致二级结构元素识别和基于相关的刚体拟合的更高质量的结果。2012 年 Wiley 期刊,Inc.生物聚合物 97:709-731。