Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA.
Cell. 2010 Apr 30;141(3):472-82. doi: 10.1016/j.cell.2010.03.041. Epub 2010 Apr 15.
To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.
为了实现细胞进入,许多无包膜病毒必须从休眠状态转变为启动状态。与包膜病毒(例如流感病毒)的膜融合机制不同,这种膜穿透机制还不太清楚。在这里,我们使用单颗粒冷冻电子显微镜报告了水生病毒的启动、感染性亚病毒粒子的 3.3A 结构。密度图显示了所有类型氨基酸(除甘氨酸外)的侧链密度,从而能够构建病毒粒子的全原子模型。我们的结构和生化结果表明,启动涉及膜穿透蛋白的自动切割,并表明 Lys84 和 Glu76 可能通过亲核攻击促进这种自动切割。我们观察到一个豆蔻酰基,共价连接到穿透蛋白的 N 末端,并嵌入疏水性口袋中。这些结果表明,无包膜病毒进入涉及穿透蛋白的自动切割,然后暴露其膜插入指,这是一个精心协调的过程。