Suppr超能文献

基于紫外吸光度双组分模型的淡水 DOM 数量和质量。

Freshwater DOM quantity and quality from a two-component model of UV absorbance.

机构信息

Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom.

出版信息

Water Res. 2012 Sep 15;46(14):4532-42. doi: 10.1016/j.watres.2012.05.021. Epub 2012 May 26.

Abstract

We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOCL⁻¹). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r² = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

摘要

我们提出了一个模型,认为紫外吸收性溶解有机质(DOM)由两个具有不同且恒定光谱的组分(A 和 B)组成。组分 A 强烈吸收紫外光,因此被认为具有芳香族发色团和疏水性,而 B 则吸收较弱,可以假定为亲水性。我们使用来自北美和英国的约 1700 个过滤地表水样本的溶解有机碳浓度 [DOC] 和相应的紫外光谱数据,通过优化 A 和 B 的消光系数,以及一小部分非吸收性 DOM(0.80mg DOCL⁻¹),对模型进行了参数化。从 270nm 和 350nm 处的吸光度数据获得了对 [DOC] 的无偏良好预测(r²=0.98),与仅拟合至 270nm 处吸光度的回归模型相比,DOC 的残差平方和降低了 66%。参数化模型可以使用任何一对合适波长的测量光吸收值来计算水样中的 [DOC] 和 A 和 B 的相对含量,即数量和质量的度量。11 个独立数据集(213 个单独样本中的 181 个)中有 9 个的 [DOC] 盲预测结果令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验