Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico.
Arch Biochem Biophys. 2012 Sep 15;525(2):170-80. doi: 10.1016/j.abb.2012.05.014. Epub 2012 Jun 12.
Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack a peroxisomal catalase. Catalases have a deep buried active site and H(2)O(2) has to go through a long passage to reach it. In all known structures of catalases, the major channel has common features, particularly in the straight and narrow final section that is positioned perpendicular to the heme. Besides, other conserved channels are present in catalases whose function remains to be elucidated. One of these channels intercommunicates the major channels from the two R-related subunits. In three of the four known large-subunits catalase structures, the heme b is partially transformed into heme d. In Neurospora crassa, this occurs in vivo and is related to oxidative stress conditions in which singlet oxygen is produced. A pure source of singlet oxygen oxidizes catalases purified from different sources and singlet oxygen quenchers prevent oxidation. A second modification is observed in N. crassa catalase-1, in which the tyrosine that forms the fifth coordination bound to the heme iron makes a covalent bond with a vicinal cysteine, similarly to the tyrosine-histidine bonding found in Escherichia coli hydroperoxidase II. Molecular dynamics has been used to determine how H(2)O(2) reaches the enzyme active site and how products exit the protein. We found that the bottleneck of the major channel seems to disappear in water and is wide open in the presence of substrate. Amino acid residues exhibiting an increased residence time for H(2)O(2) are abundant at the protein surface and at the entrances to the major channel. The net effect of this is an increased H(2)O(2)/H(2)O ratio in the major channel. Once in the final section of this channel, H(2)O(2) is retained and tends to occupy specific sites while water molecules have a higher turnover rate and occupy different sites. Despite the intense study of catalases our knowledge of this enzyme is still limited and in need of new studies and different approaches.
大多数真菌都有几种单功能血红素过氧化氢酶。丝状子囊菌(子囊菌门)有两种类型的大亚基过氧化氢酶(L1 和 L2)。L2 型通常由不同的应激诱导,是细胞外酶;那些来自 L1 型的酶不可诱导,积累在无性孢子中。L2 型过氧化氢酶对生长和细胞分化的开始很重要,而 L1 型则对孢子萌发很重要。此外,子囊菌还有一到四种小亚基过氧化氢酶。酵母(酵母门)没有大亚基过氧化氢酶,通常有一个过氧化物酶体和一个细胞质小亚基过氧化氢酶。小亚基过氧化氢酶受底物抑制,而大亚基过氧化氢酶被 H2O2 激活。一些小亚基过氧化氢酶结合 NADPH,防止被底物抑制。我们进行了系统发育分析,结果表明,在真菌多样化之前,有一个或两个来自放线菌的水平基因转移事件发生在真菌的祖先中,这是大亚基过氧化氢酶的起源。还检测到了其他可能的小亚基和大亚基过氧化氢酶基因的水平转移,并详细分析了一种来自真菌马拉色菌的转移。所有分析的 L2 型过氧化氢酶都含有一个分泌信号肽。毛霉目只保留了 L2 型过氧化氢酶,如果有两个或更多的话,其中一个含有分泌信号肽。担子菌只有 L1 型过氧化氢酶,都没有信号肽。真菌小亚基过氧化氢酶与动物过氧化氢酶有关,可能是从一个共同的祖先进化而来的。然而,有几个小亚基过氧化氢酶组。特别是,一组保守的真菌序列类似于植物过氧化氢酶,其进化起源可以追溯到一组细菌。这个组可能具有植物过氧化氢酶的血红素取向,并且原则上可以结合 NADPH。在近 100 种小亚基过氧化氢酶中,只有四分之一具有过氧化物酶体定位信号,而事实上许多真菌缺乏过氧化物酶体过氧化氢酶。过氧化氢酶具有深埋的活性位点,H2O2 必须经过很长的通道才能到达它。在所有已知的过氧化氢酶结构中,主要通道都具有共同的特征,特别是在垂直于血红素的直而狭窄的最后一节。此外,还有其他保守的通道存在于过氧化氢酶中,其功能仍有待阐明。其中一个通道与两个 R 相关亚基的主要通道相互连通。在已知的四个大亚基过氧化氢酶结构中,有三个结构中的血红素 b 部分转化为血红素 d。在粗糙脉孢菌中,这种情况在体内发生,与产生单线态氧的氧化应激条件有关。单线态氧的纯源会氧化从不同来源纯化的过氧化氢酶,而单线态氧淬灭剂会阻止氧化。在粗糙脉孢菌过氧化氢酶-1 中观察到第二种修饰,其中形成与血红素铁第五配位的酪氨酸与邻近的半胱氨酸形成共价键,类似于大肠杆菌过氧化物酶 II 中发现的酪氨酸-组氨酸键合。分子动力学已被用于确定 H2O2 如何到达酶的活性位点以及产物如何离开蛋白质。我们发现,主要通道的瓶颈似乎在水中消失,在底物存在的情况下是完全打开的。对于 H2O2 具有较长停留时间的氨基酸残基在蛋白质表面和主要通道的入口处丰富。其净效应是主要通道中 H2O2/H2O 比值增加。一旦进入该通道的最后一节,H2O2 就会被保留下来,并倾向于占据特定的位置,而水分子的周转率更高,占据不同的位置。尽管对过氧化氢酶进行了深入研究,但我们对这种酶的了解仍然有限,需要进行新的研究和采用不同的方法。