过氧化氢酶与过氧化物酶的比较:模型体系中 H₂O₂氧化的密度泛函理论研究及其对血红素蛋白工程的意义。
Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering.
机构信息
Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
出版信息
J Inorg Biochem. 2012 Dec;117:292-7. doi: 10.1016/j.jinorgbio.2012.07.002. Epub 2012 Jul 6.
Catalases and peroxidases are ubiquitous heme enzymes that catalyze the removal of hydrogen peroxide (H(2)O(2)). Both enzymes use one molecule of hydrogen peroxide to form a high valent iron intermediate named Compound I (Cpd I). However, whereas catalase Cpd I oxidizes a second H(2)O(2) molecule to oxygen, peroxidases use this intermediate to oxidize other substrates rather than H(2)O(2). The origin of the different reactivity of peroxidases and catalases is not known, but it is likely to be related to structural differences between the two heme active sites. Recent modeling studies suggest that the oxidation of H(2)O(2) by catalase Cpd I may take place by two hydrogen atom transfer steps. In this work, we investigate how catalases and peroxidases compare along the same hydrogen transfer steps to give hints into the question why peroxidases cannot efficiently oxidize H(2)O(2). The use of simplified models allows us to probe the direct effect of the proximal ligand (tyrosinate in catalases and histidine in peroxidases) without masking from the protein environment. We show that the nature of the fifth ligand (His in peroxidase and Tyr in catalase) has little effect on the energy barriers of the hydrogen transfer steps. On the contrary, the Cpd I-hydrogen peroxide (O(Fe)-O(peroxide)) distance affects significantly the reaction barriers. We propose that the distal side architecture of peroxidases do not allow to attain short O(Cpd I)-O(peroxide) distances, thus resulting in a lower efficiency towards H(2)O(2) oxidation.
过氧化氢酶和过氧化物酶是普遍存在的血红素酶,它们催化过氧化氢 (H₂O₂) 的去除。这两种酶都使用一个过氧化氢分子形成一个高价铁中间体,称为化合物 I (Cpd I)。然而,过氧化氢酶 Cpd I 将第二个 H₂O₂分子氧化为氧气,而过氧化物酶则利用这个中间体氧化其他底物而不是 H₂O₂。过氧化物酶和过氧化氢酶的不同反应性的起源尚不清楚,但很可能与这两个血红素活性中心的结构差异有关。最近的建模研究表明,过氧化氢酶 Cpd I 氧化 H₂O₂可能通过两个氢原子转移步骤发生。在这项工作中,我们研究了过氧化氢酶和过氧化物酶在相同的氢转移步骤中是如何比较的,以提供有关为什么过氧化物酶不能有效氧化 H₂O₂的问题的线索。使用简化模型允许我们在不被蛋白质环境掩盖的情况下,直接探测近端配体(过氧化氢酶中的酪氨酸和过氧化物酶中的组氨酸)的直接影响。我们表明,第五配体的性质(过氧化物酶中的 His 和过氧化氢酶中的 Tyr)对氢转移步骤的能量障碍影响很小。相反,Cpd I-过氧化氢 (O(Fe)-O(peroxide)) 距离显著影响反应障碍。我们提出,过氧化物酶的远端侧结构不允许达到短的 O(Cpd I)-O(peroxide) 距离,从而导致对 H₂O₂氧化的效率降低。