Suppr超能文献

考察遗传算法在高通量下游工艺开发中的应用。

Examination of a genetic algorithm for the application in high-throughput downstream process development.

机构信息

Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology-KIT, Karlsruhe, Germany.

出版信息

Biotechnol J. 2012 Oct;7(10):1203-15. doi: 10.1002/biot.201200145. Epub 2012 Jul 30.

Abstract

Compared to traditional strategies, application of high-throughput experiments combined with optimization methods can potentially speed up downstream process development and increase our understanding of processes. In contrast to the method of Design of Experiments in combination with response surface analysis (RSA), optimization approaches like genetic algorithms (GAs) can be applied to identify optimal parameter settings in multidimensional optimizations tasks. In this article the performance of a GA was investigated applying parameters applicable in high-throughput downstream process development. The influence of population size, the design of the initial generation and selection pressure on the optimization results was studied. To mimic typical experimental data, four mathematical functions were used for an in silico evaluation. The influence of GA parameters was minor on landscapes with only one optimum. On landscapes with several optima, parameters had a significant impact on GA performance and success in finding the global optimum. Premature convergence increased as the number of parameters and noise increased. RSA was shown to be comparable or superior for simple systems and low to moderate noise. For complex systems or high noise levels, RSA failed, while GA optimization represented a robust tool for process optimization. Finally, the effect of different objective functions is shown exemplarily for a refolding optimization of lysozyme.

摘要

与传统策略相比,高通量实验与优化方法的结合应用可能会加速下游工艺开发,并增进我们对工艺的理解。与实验设计与响应面分析(RSA)相结合的方法相比,遗传算法(GA)等优化方法可用于在多维优化任务中确定最佳参数设置。本文研究了在高通量下游工艺开发中应用适用参数的 GA 的性能。研究了种群规模、初始世代设计和选择压力对优化结果的影响。为了模拟典型的实验数据,使用了四个数学函数进行了计算机评估。GA 参数对只有一个最优值的地形影响较小。对于具有多个最优值的地形,参数对 GA 性能和找到全局最优值的成功有重大影响。随着参数数量和噪声的增加,早熟收敛增加。RSA 在简单系统和低到中等噪声下表现相当或更好。对于复杂系统或高噪声水平,RSA 失败,而 GA 优化则是工艺优化的强大工具。最后,以溶菌酶复性优化为例,展示了不同目标函数的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验