Suppr超能文献

使用全局拟合进行聚合酶链反应的稳健定量。

Robust quantification of polymerase chain reactions using global fitting.

机构信息

The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, Florida, United States of America.

出版信息

PLoS One. 2012;7(5):e37640. doi: 10.1371/journal.pone.0037640. Epub 2012 May 31.

Abstract

BACKGROUND

Quantitative polymerase chain reactions (qPCR) are used to monitor relative changes in very small amounts of DNA. One drawback to qPCR is reproducibility: measuring the same sample multiple times can yield data that is so noisy that important differences can be dismissed. Numerous analytical methods have been employed that can extract the relative template abundance between samples. However, each method is sensitive to baseline assignment and to the unique shape profiles of individual reactions, which gives rise to increased variance stemming from the analytical procedure itself.

PRINCIPAL FINDINGS

We developed a simple mathematical model that accurately describes the entire PCR reaction profile using only two reaction variables that depict the maximum capacity of the reaction and feedback inhibition. This model allows quantification that is more accurate than existing methods and takes advantage of the brighter fluorescence signals from later cycles. Because the model describes the entire reaction, the influences of baseline adjustment errors, reaction efficiencies, template abundance, and signal loss per cycle could be formalized. We determined that the common cycle-threshold method of data analysis introduces unnecessary variance because of inappropriate baseline adjustments, a dynamic reaction efficiency, and also a reliance on data with a low signal-to-noise ratio.

SIGNIFICANCE

Using our model, fits to raw data can be used to determine template abundance with high precision, even when the data contains baseline and signal loss defects. This improvement reduces the time and cost associated with qPCR and should be applicable in a variety of academic, clinical, and biotechnological settings.

摘要

背景

定量聚合酶链反应(qPCR)用于监测极少量 DNA 的相对变化。qPCR 的一个缺点是可重复性:多次测量相同的样本会产生噪音很大的数据,以至于重要的差异可能被忽略。已经采用了许多分析方法来提取样本之间的相对模板丰度。然而,每种方法都容易受到基线分配和单个反应独特形状曲线的影响,这会导致由于分析过程本身而产生更大的方差。

主要发现

我们开发了一种简单的数学模型,该模型仅使用两个反应变量即可准确描述整个 PCR 反应曲线,这两个变量描述了反应的最大容量和反馈抑制。该模型允许比现有方法更准确的定量,并且利用了后期循环中更亮的荧光信号。由于该模型描述了整个反应,因此可以正式化对基线调整误差、反应效率、模板丰度以及每个循环的信号损失的影响。我们确定,数据分析的常见循环阈值方法由于不合适的基线调整、动态反应效率以及对低信噪比数据的依赖,引入了不必要的方差。

意义

使用我们的模型,可以对原始数据进行拟合,以高精度确定模板丰度,即使数据包含基线和信号损失缺陷。这种改进减少了 qPCR 相关的时间和成本,并且应该适用于各种学术、临床和生物技术环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf8/3365123/d9941c4b3fb5/pone.0037640.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验