Suppr超能文献

定量聚合酶链反应数据分析:通过打破传统获得更好的结果。

qPCR data analysis: Better results through iconoclasm.

作者信息

Tellinghuisen Joel, Spiess Andrej-Nikolai

机构信息

Department of Chemistry, Vanderbilt University Nashville, TN, 37235, USA.

Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Biomol Detect Quantif. 2019 Jun 5;17:100084. doi: 10.1016/j.bdq.2019.100084. eCollection 2019 Mar.

Abstract

The standard approach for quantitative estimation of genetic materials with qPCR is calibration with known concentrations for the target substance, in which estimates of the quantification cycle ( ) are fitted to a straight-line function of log( ), where is the initial number of target molecules. The location of for the unknown on this line then yields its . The most widely used definition for is an absolute threshold that falls in the early growth cycles. This usage is flawed as commonly implemented: threshold set very close to the baseline level, which is estimated separately, from designated "baseline cycles." The absolute threshold is especially poor for dealing with the scale variability often observed for growth profiles. Scale-independent markers, like the first derivative maximum (FDM) and a relative threshold ( ) avoid this problem. We describe improved methods for estimating these and other markers and their standard errors, from a nonlinear algorithm that fits growth profiles to a 4-parameter log-logistic function plus a baseline function. Further, by examining six multidilution, multireplicate qPCR data sets, we find that nonlinear expressions are often preferred statistically for the dependence of on log( ). This means that the amplification efficiency depends on , in violation of another tenet of qPCR analysis. Neglect of calibration nonlinearity leads to biased estimates of the unknown. By logic, estimates from calibration fitting pertain to the earliest baseline cycles, the early growth cycles used to estimate from growth profiles for single reactions. This raises concern about the use of the latter in lengthy extrapolations to estimate . Finally, we observe that replicate ensemble standard deviations greatly exceed predictions, implying that much better results can be achieved from qPCR through better experimental procedures, which likely include reducing pipette volume uncertainty.

摘要

用定量聚合酶链反应(qPCR)对遗传物质进行定量估计的标准方法是用目标物质的已知浓度进行校准,其中定量循环( )的估计值被拟合为log( )的直线函数,其中 是目标分子的初始数量。未知样本在这条线上的 位置随后可得出其 。 最广泛使用的 定义是在早期生长周期中的绝对阈值。这种用法在通常实施时存在缺陷:阈值设置得非常接近基线水平,而基线水平是从指定的“基线循环”中单独估计的。绝对阈值在处理生长曲线中经常观察到的尺度变异性方面特别差。与尺度无关的标记,如一阶导数最大值(FDM)和相对阈值( )可避免这个问题。我们描述了从一种非线性算法改进的方法,该算法将生长曲线拟合为四参数对数逻辑函数加上基线函数,用于估计这些和其他 标记及其标准误差。此外,通过检查六个多稀释、多重复的qPCR数据集,我们发现对于 对log( )的依赖性,非线性表达式在统计上通常更受青睐。这意味着扩增效率 取决于 ,这违反了qPCR分析的另一个原则。忽略校准非线性会导致对未知样本估计的偏差。从逻辑上讲,校准拟合的 估计值适用于最早的基线循环, 而用于从单个反应的生长曲线估计 的是早期生长循环。这引发了对在长时间外推中使用后者来估计 的担忧。最后,我们观察到重复样本的总体标准偏差大大超过预测值,这意味着通过更好的实验程序,qPCR可以获得更好的结果,这可能包括减少移液器体积的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a39/6554483/76f82a7a15c3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验