Suppr超能文献

从反应时间数据的傅里叶反卷积中获得有意义的结果。

Obtaining meaningful results from Fourier deconvolution of reaction time data.

作者信息

Smith P L

机构信息

University of Adelaide, South Australia.

出版信息

Psychol Bull. 1990 Nov;108(3):533-50. doi: 10.1037/0033-2909.108.3.533.

Abstract

The technique of Fourier deconvolution is a powerful tool for testing distributional predictions of stage models of reaction time. However, direct application of Fourier theory to reaction time data has sometimes produced disappointing results. This article reviews Fourier transform theory as it applies to the problem of deconvolving a component of the reaction time distribution. Problems encountered in deconvolution are shown to be due to the presence of noise in the Fourier transforms of the sampled distributions, which is amplified by the operation of deconvolution. A variety of filtering techniques for the removal of noise are discussed, including window functions, adaptive kernel smoothing, and optimal Wiener filtering. The best results were obtained using a window function whose pass band was determined empirically from the power spectrum of the deconvolved distribution. These findings are discussed in relation to other, nontrigonometric approaches to the problem of deconvolution.

摘要

傅里叶反卷积技术是检验反应时阶段模型分布预测的有力工具。然而,将傅里叶理论直接应用于反应时数据有时会产生令人失望的结果。本文回顾了傅里叶变换理论在反卷积反应时分布成分问题中的应用。结果表明,反卷积中遇到的问题是由于采样分布的傅里叶变换中存在噪声,而这种噪声会因反卷积操作而放大。文中讨论了多种去除噪声的滤波技术,包括窗函数、自适应核平滑和最优维纳滤波。使用通过对反卷积分布的功率谱进行经验确定通带的窗函数可获得最佳结果。本文还结合反卷积问题的其他非三角方法对这些发现进行了讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验