Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA.
Biochemistry. 2012 Jul 17;51(28):5674-83. doi: 10.1021/bi300631g. Epub 2012 Jun 29.
Human SULT2A1 is one of two predominant sulfotransferases in liver and catalyzes transfer of the sulfuryl moiety (-SO(3)) from activated sulfate (PAPS, 3'-phosphoadenosine 5-phosphosulfate) to hundreds of acceptors (metabolites and xenobiotics). Sulfation recodes the biologic activity of acceptors by altering their receptor interactions. The molecular basis on which these enzymes select and sulfonate specific acceptors from complex mixtures of competitors in vivo is a long-standing issue in the SULT field. Raloxifene, a synthetic steroid used in the prevention of osteoporosis, and dehydroepiandrosterone (DHEA), a ubiquitous steroid precusor, are reported to be sulfated efficiently by SULT2A1 in vitro, yet unlike DHEA, raloxifene is not sulfated in vivo. This selectivity was explored in initial rate and equilibrium binding studies that demonstrate pronounced binding antisynergy (21-fold) between PAPS and raloxifene, but not DHEA. Analysis of crystal structures suggests that PAP binding restricts access to the acceptor-binding pocket by restructuring a nine-residue segment of the pocket edge that constricts the active site opening, or "pore", that sieves substrates on the basis of their geometries. In silico docking predicts that raloxifene, which is considerably larger than DHEA, can bind only to the unliganded (open) enzyme, whereas DHEA binds both the open and closed forms. The predictions of these structures with regard to substrate binding are tested using equilibrium and pre-steady-state ligand binding studies, and the results confirm that a nucleotide-driven isomerization controls access to the acceptor-binding pocket and plays an important role in substrate selection by SULT2A1 and possibly other sulfotransferases.
人 SULT2A1 是肝脏中两种主要的磺基转移酶之一,催化将磺酰基部分(-SO(3)) 从活性硫酸盐(PAPS,3'-磷酸腺苷 5-磷酸硫酸酯)转移到数百个接受体(代谢物和外源性物质)。硫酸化通过改变接受体的受体相互作用来重新编码接受体的生物活性。这些酶从体内复杂的竞争混合物中选择和磺化特定接受体的分子基础是磺基转移酶领域长期存在的问题。雷洛昔芬是一种用于预防骨质疏松症的合成类固醇,脱氢表雄酮(DHEA)是一种普遍存在的类固醇前体,据报道在体外能被 SULT2A1 有效地磺化,但与 DHEA 不同,雷洛昔芬在体内不被磺化。在初始速率和平衡结合研究中探索了这种选择性,该研究表明 PAPS 和雷洛昔芬之间存在明显的结合拮抗作用(21 倍),而 DHEA 则没有。晶体结构分析表明,PAP 结合通过重塑口袋边缘的九残基片段来限制结合口袋的进入,该片段限制了活性位点开口(或“孔”)的大小,根据底物的几何形状对其进行筛选。计算机对接预测,雷洛昔芬比 DHEA 大得多,只能与未结合(开放)的酶结合,而 DHEA 结合开放和闭合两种形式。使用平衡和预稳态配体结合研究对这些结构关于底物结合的预测进行了测试,结果证实核苷酸驱动的异构化控制了对接受体结合口袋的进入,并在 SULT2A1 和可能其他磺基转移酶的底物选择中发挥重要作用。