Suppr超能文献

碳水化合物-芳环相互作用。

Carbohydrate-aromatic interactions.

机构信息

Chemical & Physical Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.

出版信息

Acc Chem Res. 2013 Apr 16;46(4):946-54. doi: 10.1021/ar300024d. Epub 2012 Jun 15.

Abstract

The recognition of saccharides by proteins has far reaching implications in biology, technology, and drug design. Within the past two decades, researchers have directed considerable effort toward a detailed understanding of these processes. Early crystallographic studies revealed, not surprisingly, that hydrogen-bonding interactions are usually involved in carbohydrate recognition. But less expectedly, researchers observed that despite the highly hydrophilic character of most sugars, aromatic rings of the receptor often play an important role in carbohydrate recognition. With further research, scientists now accept that noncovalent interactions mediated by aromatic rings are pivotal to sugar binding. For example, aromatic residues often stack against the faces of sugar pyranose rings in complexes between proteins and carbohydrates. Such contacts typically involve two or three CH groups of the pyranoses and the π electron density of the aromatic ring (called CH/π bonds), and these interactions can exhibit a variety of geometries, with either parallel or nonparallel arrangements of the aromatic and sugar units. In this Account, we provide an overview of the structural and thermodynamic features of protein-carbohydrate interactions, theoretical and experimental efforts to understand stacking in these complexes, and the implications of this understanding for chemical biology. The interaction energy between different aromatic rings and simple monosaccharides based on quantum mechanical calculations in the gas phase ranges from 3 to 6 kcal/mol range. Experimental values measured in water are somewhat smaller, approximately 1.5 kcal/mol for each interaction between a monosaccharide and an aromatic ring. This difference illustrates the dependence of these intermolecular interactions on their context and shows that this stacking can be modulated by entropic and solvent effects. Despite their relatively modest influence on the stability of carbohydrate/protein complexes, the aromatic platforms play a major role in determining the specificity of the molecular recognition process. The recognition of carbohydrate/aromatic interactions has prompted further analysis of the properties that influence them. Using a variety of experimental and theoretical methods, researchers have worked to quantify carbohydrate/aromatic stacking and identify the features that stabilize these complexes. Researchers have used site-directed mutagenesis, organic synthesis, or both to incorporate modifications in the receptor or ligand and then quantitatively analyzed the structural and thermodynamic features of these interactions. Researchers have also synthesized and characterized artificial receptors and simple model systems, employing a reductionistic chemistry-based strategy. Finally, using quantum mechanics calculations, researchers have examined the magnitude of each property's contribution to the interaction energy.

摘要

糖蛋白识别在生物学、技术和药物设计中具有深远的意义。在过去的二十年中,研究人员投入了相当大的精力来深入了解这些过程。早期的晶体学研究揭示,氢键相互作用通常参与碳水化合物的识别,这并不奇怪。但出人意料的是,研究人员观察到,尽管大多数糖具有高度亲水性,但受体的芳环在碳水化合物识别中常常起着重要作用。随着进一步的研究,科学家现在接受了非共价相互作用由芳环介导对糖结合至关重要。例如,在蛋白质和碳水化合物之间的复合物中,芳香残基经常与糖吡喃环的面堆叠。这种接触通常涉及吡喃糖的两个或三个 CH 基团和芳环的π电子密度(称为 CH/π 键),这些相互作用可以呈现多种几何形状,芳环和糖单元的排列要么是平行的,要么是非平行的。在本综述中,我们提供了蛋白质-碳水化合物相互作用的结构和热力学特征的概述,理解这些复合物中堆积作用的理论和实验努力,以及对化学生物学的影响。基于气相量子力学计算,不同芳环与简单单糖之间的相互作用能在 3 到 6 kcal/mol 范围内。在水中测量的实验值略小,每个单糖与芳环之间的相互作用约为 1.5 kcal/mol。这种差异说明了这些分子间相互作用对其环境的依赖性,并表明这种堆积可以通过熵和溶剂效应来调节。尽管它们对碳水化合物/蛋白质复合物稳定性的影响相对较小,但芳构平台在决定分子识别过程的特异性方面起着重要作用。碳水化合物/芳构相互作用的识别促使人们进一步分析影响它们的性质。研究人员使用各种实验和理论方法,努力量化碳水化合物/芳构堆积并确定稳定这些复合物的特征。研究人员使用定点突变、有机合成或两者结合,在受体或配体中引入修饰,然后定量分析这些相互作用的结构和热力学特征。研究人员还使用基于简化化学的策略合成和表征了人工受体和简单模型系统。最后,使用量子力学计算,研究人员检查了每个性质对相互作用能贡献的大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验