Guz Jolanta, Jurgowiak Marek, Oliński Ryszard
Katedra Biochemii Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu.
Postepy Hig Med Dosw (Online). 2012 May 24;66:275-86. doi: 10.5604/17322693.997954.
Recent discoveries have demonstrated that 5-methylcytosine (5mC) may be hydroxymethylated to 5-hydroxymethylcytosine (5hmC) in mammals and that genomic DNA may contain about 0.02-0.7% of 5hmC. The aforementioned modification is the key intermediate of active DNA demethylation and has been named "the sixth base in DNA". Although active DNA demethylation in mammals is still controversial, the most plausible mechanism/s of active 5mC demethylation include involvement of three families of enzymes; i) Tet, which is involved in hydroxylation of 5mC to form 5hmC, which can be further oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC); ii) deamination of 5mC (or 5hmC) by AID/APOBEC to form thymine or 5-hydroxymethyluracil (5hmU) mispaired with guanine; iii) the BER pathway induced by involvement of TDG glycosylase to replace the above described base modification (5fC, 5caC, 5hmU) with cytosine to demethylate DNA. A plausible scenario for engagement of TDG glycosylase (or some other G-T glycosylase) is through prior deamination of 5-mC to thymine, which generates a G: T substrate for the enzyme. Here cytidine deaminase of the AID/APOBEC family was implicated in the deamination step. It is possible that TDG may act in concert with these deaminases. It seems that mutations are not the only effect of oxidatively modified DNA bases. These, as yet, understudied aspects of the damage suggest a potential for 8-oxoguanine (8-oxoGua) to affect gene expression via chromatin relaxation. It is possible that 8-oxoGua presence in specific DNA sequences may be widely used for transcription regulation, which suggests the epigenetic nature of 8-oxoGua presence in DNA.
最近的研究发现,在哺乳动物中5-甲基胞嘧啶(5mC)可能会被羟甲基化为5-羟甲基胞嘧啶(5hmC),并且基因组DNA中可能含有约0.02%-0.7%的5hmC。上述修饰是DNA主动去甲基化的关键中间体,被命名为“DNA中的第六种碱基”。尽管哺乳动物中的DNA主动去甲基化仍存在争议,但最合理的主动5mC去甲基化机制包括三类酶的参与:i)Tet酶,其参与将5mC羟基化为5hmC,5hmC可进一步氧化为5-甲酰基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC);ii)AID/APOBEC对5mC(或5hmC)进行脱氨作用,形成与鸟嘌呤错配的胸腺嘧啶或5-羟甲基尿嘧啶(5hmU);iii)TDG糖基化酶参与诱导碱基切除修复(BER)途径,用胞嘧啶取代上述碱基修饰(5fC、5caC、5hmU)以使DNA去甲基化。TDG糖基化酶(或其他一些G-T糖基化酶)参与的一种合理情况是通过5-甲基胞嘧啶先脱氨生成胸腺嘧啶,从而为该酶生成G:T底物。在这里,AID/APOBEC家族的胞苷脱氨酶参与了脱氨步骤。TDG可能与这些脱氨酶协同作用。似乎突变并不是氧化修饰的DNA碱基的唯一影响。这些尚未充分研究的损伤方面表明,8-氧代鸟嘌呤(8-oxoGua)有可能通过染色质松弛影响基因表达。特定DNA序列中8-oxoGua的存在可能被广泛用于转录调控,这表明DNA中8-oxoGua存在的表观遗传性质。