Suppr超能文献

在 9.4T 场强下使用可调节贴片天线进行人脑成像传输。

Human brain imaging at 9.4 T using a tunable patch antenna for transmission.

机构信息

Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Tübingen 72076, Germany.

出版信息

Magn Reson Med. 2013 May;69(5):1494-500. doi: 10.1002/mrm.24367. Epub 2012 Jun 15.

Abstract

For human brain imaging at ultrahigh fields, the traveling wave concept can provide a more uniform B1+ field over a larger field of view with improved patient comfort compared to conventional volume coils. It suffers, however, from limited transmit efficiency and receive sensitivity and is not readily applicable in systems where the radiofrequency shield is too narrow to allow for unattenuated wave propagation. Here, the near field of a capacitively adjustable patch antenna for excitation is combined with a receive-only array at 9.4 T. The antenna is designed in compact size and placed in close proximity to the subject to improve the transmit efficiency in narrow bores. Experimental and numerical comparisons to conventional microstrip arrays reveal improved B1+ homogeneity and longitudinal coverage, but at the cost of elevated local specific absorption rate. High-resolution functional and anatomical images demonstrate the use of this setup for in vivo human brain imaging at 9.4 T.

摘要

对于超高场的人脑成像,与传统容积线圈相比,行波概念可以在更大的视野范围内提供更均匀的 B1+场,并提高患者舒适度。然而,它的传输效率和接收灵敏度有限,并且不适用于射频屏蔽太窄而无法允许无衰减波传播的系统。在这里,将可电容调节的贴片天线的近场与在 9.4 T 下的仅接收阵列相结合。该天线设计紧凑,并放置在靠近受试者的位置,以提高在狭窄孔中的传输效率。与传统微带阵列的实验和数值比较显示出改进的 B1+均匀性和纵向覆盖范围,但代价是局部比吸收率升高。高分辨率功能和解剖图像证明了这种设置可用于在 9.4 T 下进行体内人脑成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验